
EDUCATIONAL SOFTWARE TESTING
FOR TEXTUAL AND BLOCK-BASED
PROGRAMMING LANGUAGES

Niko Strijbol

Supervisors:
Prof. Dr. Peter Dawyndt
Prof. Dr. Christophe Scholliers
Prof. Dr. Ir. Bart Mesuere

A dissertation submitted to Ghent University in partial fulfilment of the requirements for the degree of
Doctor of Computer Science.

Academic year: 2023 – 2024

This book was typeset using LATEX and LuaTEX with Markus Kohms̓ document
class KOMA-Script.

The text is set in Frank Grießhammer s̓ Source Serif, an open‐source font from
Adobe. Titles, headings, and other accents use Paul Hunt s̓ Source Sans. Both
were designed to work together, under the auspices of Robert Slimbach. Code is
set with Paul Hunt s̓ Source Code Pro, from the same family.

The title page is set in UGent Panno Text by Pieter van Rosmalen, as required by
our University s̓ style guide. Originally developed for South Korean traffic signs,
the Text variant was optimized for continuous text. Fun fact: the commercially
available Panno Text does include italic variants.

Cover illustration by Дарья Гаенко [Darya Gaenko], under licence from iStock.
It depicts the dvk 2, a Soviet computer from around 1985.

ii

http://www.leningrad.su/museum/show_big.php?n=1189

Samenvatting

Leren programmeren is uitdagend en aldus ervaren veel studenten pro‐
grammeervakken als moeilijk. Programmeeronderwijs is geen uitzonde‐
ring op het spreekwoord oefening baart kunst. Het is algemeen aanvaard
dat het doen de beste manier is om te leren programmeren: hoe meer
ervaring, hoe beter de programmeerkunst. Om evenwel iets te leren
van al die programmeerervaring is het belangrijk dat studenten op tijd
voldoende kwalitatieve feedback krijgen.

Jammer genoeg is net het geven van die feedback heel tijdrovend en ar‐
beidsintensief, zeker als er veel oefeningen en grote aantallen studenten
zijn. Enerzijds moeten studenten dus zoveel mogelijk programmeren,
maar anderzijds is er weinig tijd om goede feedback te voorzien. Daarom
is er een lange en rijke geschiedenis (sinds de jaren 1960) van het gebruik
der automatisering om feedback te geven. Het proces om feedback op
geautomatiseerdewijze te geven heet geautomatiseerde beoordeling (van
het Engelse automated assessment).

In de meeste gevallen houdt geautomatiseerde beoordeling voor pro‐
grammeeronderwijs in dat men werkt met testraamwerken voor soft‐
ware. De code die studenten voor een bepaalde oefeningen indienen (we
noemen dit een oplossing) wordt getest, en dat minstens op juistheid.
Vaak is de feedback wel veel uitgebreider dan enkel een globale juist of
fout.

Onze vakgroep heeft, zoals zovele anderen, een online platform gemaakt
voor geautomatiseerde beoordelingen: Dodona. Een belangrijke eigen‐
schap is de scheiding tussen het platform zelf (verantwoordelijk voor
gebruikersbeheer, cursusbeheer, de gebruikersinterface, enz.) en de
judge (het testraamwerk verantwoordelijk voor het beoordelen van op‐
lossingen). Zo kan Dodona bijna elke programmeertaal ondersteunen:
momenteel is er ondersteuning voor C, Haskell, Java, Kotlin, Prolog,
R, Scheme, Bash, C#, JavaScript, Python, html, sql, Markdown, en
Turtle.

Tijdens het werken aan enmet Dodona stelden we enige tekortkomingen
vast in bestaande hulpmiddelen die gebruikt worden in het program‐
meeronderwijs. Hoofdstuk 1 geeft een gedetailleerd overzicht van de

Lang is relatief
natuurlijk, maar
wel gepast
wetende dat leren
programmeren
zelf in de jaren
1960 opkwam.

iii

Samenvatting

onderwijscontext en van het Dodona‐platform. Samengevat behandelt
dit proefschrift vijf van die waargenomen tekortkomingen.

Wemerkten dat veel oefeningen in Dodona geschikt zijn om te gebruiken
in meerdere programmeertalen, althans in theorie. Om een oefening
daadwerkelijk te gebruiken in een andere programmeertaal, moet men
ze eerst kopiëren, dan handmatig het testplan omzetten naar het for‐
maat dat de judge voor die programmeertaal gebruikt, en ten slotte nog
de configuratiebestanden en opgave aanpassen. Dit is veel handwerk.
Hoofdstuk 2 biedt een oplossing: tested, een educatief testraamwerk
voor software. Kenmerkend aan tested is de mogelijkheid om program‐
meertaalonafhankelijke oefeningen te schrijven. Dit wil zeggen dat één
oefening (met één enkel testplan) opgelost kan worden in meerdere pro‐
grammeertalen, met ondersteuning voor geautomatiseerde beoordeling.
Een oefeningen is dus bruikbaar in meerdere programmeertalen zonder
enige bijkomende inspanning.

Met een prototype van tested in de hand namen we dan een stapje terug
om naar het grote geheel te kijken: wat is er nodig om van een prototype
naar een goede oplossing voor het maken van programmeeroefeningen
te gaan?We willen tested de standaardoptie maken voor lesgevers, in
zowel hoger als secundair onderwijs. Hiervoor hebbenwe tested‐dsl in
het leven geroepen, dat we voorstellen in hoofdstuk 3. Het is een domein‐
specifieke taal om oefeningenmet ondersteuning voor geautomatiseerde
beoordeling in meerdere programmeertalen te schrijven. Een domein‐
specifieke taal is een formaat dat specifiek ontworpen is voor een bepaald
gebruik, hier dus het schrijven van programmeeroefeningen. Door aan‐
dacht te besteden aan de ergonomie van tested‐dsl, hebben we ervoor
gezorgd dat de taal ook nuttig is voor oefeningen die niet bedoeld zijn
om gebruikt te worden in meerdere programmeertalen. We raden nu
alle lesgevers op Dodona aan om tested te gebruiken voor het opstellen
van oefeningen, zelfs als ze oefeningen willen maken die bijvoorbeeld
enkel in JavaScript moeten opgelost worden.

Bij jonge kinderen gebruikt men vaak visuele programmeertalen om
te leren programmeren. Een visuele programmeertaal laat gebruikers
toe om programmas̓ te maken door stukken van het programma niet
tekstueel maar grafisch te manipuleren. Scratch is binnen het onderwijs
veruit de meestgebruikte visuele programmeertaal. Programmeren in
Scratch bestaat uit het slepen en in elkaar klikken van blokjes (een beetje
zoals puzzelstukjes of legoblokjes). Vandaar dat men Scratch ook wel een
blokgebaseerde programmeertaal noemt. Een gedetailleerde inleiding
over Scratch staat in hoofdstuk 4.

Dodona ondersteunt meerdere programmeertalen, dus oorspronkelijk
wilden we ondersteuning voor Scratch toevoegen aan Dodona. Echter,

iv

Scratch is niet alleen een programmeertaal, het is ook een program‐
meeromgeving. Het werd snel duidelijk dat een platform voor Scratch
andere vereisten heeft dan wat we met Dodona kunnen doen. Daarom
gingen we een samenwerking aan met CodeCosmos, een commerciële
partner. Aangezien CodeCosmos een educatieve uitgeverij is, die ook
oefeningen voor Scratch aanbiedt, heeft ze al een platform voor Scratch.
Bovendien heeft ze ook meer ervaring met het maken van oefeningen
voor Scratch.

Hoofdstuk 5 stelt Itch voor, ons testraamwerk voor Scratch. Het onder‐
steunt zowel statische testen (wat betekent dat er enkel naar de blokken
gekeken wordt, zonder het programma uit te voeren) en dynamische
testen (waar het programma uitgevoerd wordt met een bepaalde invoer
en de resultaten bekeken worden). Deze combinatie betekent dat Itch
een diverse reeks Scratch‐programmas̓ kan beoordelen. Scratch lijkt in
bepaalde opzichten meer op een spelletje dan op een programmeertaal.
Als gevolg hiervan experimenteren kinderen veel en gebruiken ze hun
fantasie bij het programmeren. Dat is op zijn beurt een uitdaging bij
het testen van Scratch‐programmas̓. Als de opgave bijvoorbeeld “Teken
een huis” is, hoe kunnen we een oplossing hiervoor dan beoordelen? Er
zijn dus limieten aan de soorten oefeningen die Itch kan beoordelen. De
overwegingen die bij deze beslissingen komen kijken worden behandeld
in het hoofdstuk.

Als een testraamwerk zoals Itch feedback geeft aan leerlingen, dan is
alles soms juist, maar veel vaker zijn er testen die falen. Daarop begint
het debugproces: leerlingen moeten achterhalen wat de oorzaak van de
gefaalde test is. Dit is notoir moeilijk, want de locatie van de oorzaak
in het programma is vaak niet voor de hand liggend. Er zijn gelukkig
wel middelen om hiermee te helpen, met als belangrijkste de debuggers.
Voor tekstuele programmeertalen zijn er veel debuggers en is er ook
veel onderzoek over debuggers. Dodona ondersteunt bijvoorbeeld een
debugger voor Python.

Voor Scratch, en blokgebaseerde programmeertalen in het algemeen,
is dit evenwel niet het geval. Daarom introduceren we in hoofdstuk 6
een nieuwe debugger voor Scratch: Blink. Onze debugger ondersteunt
stappen door de code (stapsgewijs de code uitvoeren), de programma‐
uitvoering pauzeren en verder laten lopen, breekpunten (speciale blok‐
ken die de programma‐uitvoering pauzeren wanneer ze zelf uitgevoerd
worden), en tijdreizen. Een debugger met tijdreizen geeft de mogelijk‐
heid om terug te spoelen in de uitvoering van het programma. Elke stap
in de uitvoering wordt opgeslagen, dus kunnen we nadien stap per stap
teruggaan. Omdat Scratch voornamelijk gebruikt wordt door een jong
publiek, hebben we veel aandacht besteed aan het intuïtief maken van

v

Samenvatting

de debugger. De eerste experimenten in een klas tonen dat leerlingen
inderdaad vinden dat de debugger makkelijk ommee te werken is, en
dat ze het tijdreizen in het bijzonder nuttig vinden.

We hebben net gezegd dat de debugger het mogelijk maakt om stapsge‐
wijs een programma uit te voeren.We hebben bewust niet beschreven
wat we bedoelen met een stap in de context van Scratch. In Scratch be‐
staat een project namelijk uit verschillende sprites (die getekend worden
op het scherm). Elke sprite heeft zijn eigen code, een verzameling stapels
(een stapel is een reeks aan elkaar vastgemaakte blokken). Elke stapel
van elke sprite wordt gelijktijdig uitgevoerd in Scratch. Een traditionele
definitie van een stap (één blok in één stapel per keer) vinden we daarom
niet ideaal. In plaats daarvan willen we bij een stap in elke stapel één
blok verder gaan.

Dit is evenwel niet mogelijk door de manier waarop Scratch intern werkt
(het uitvoeringsmodel). Scratch gebruikt een coöperatief systeem, wat
betekent dat het meerdere blokken in dezelfde stapel uitvoert, dan over‐
schakelt naar de volgende stapel en daar meerdere blokken uitvoert,
enzovoort. Door snel tussen stapels te wisselen, lijkt het alsof de stapels
in parallel uitgevoerd worden. Dit uitvoeringsmodel werd gekozen om
een aantal synchronisatieproblemen bij gelijktijdige programmas̓ te ver‐
mijden, maar heeft ook nadelen. Zo veroorzaakt het in bepaalde gevallen
niet‐intuïtief gedrag.

In hoofdstuk 7 onderzoeken we of we het uitvoeringsmodel van Scratch
zo kunnen wijzigen dat stappen door de code mogelijk wordt zoals hier‐
boven beschreven (één blokje in elke stapel per stap), zonder negatieve
effecten op de snelheid en het gedrag van bestaande Scratch‐projecten.
Aangezien Scratch zoveel gebruikt wordt, kunnen we geen wijzigingen
voorstellen die ervoor zorgen dat een groot deel van de bestaande projec‐
ten stopt met werken of zich anders gaat gedragen. Om hier met kennis
van zaken over te kunnen oordelen, hebben we eerst onderzocht hoe een
typisch Scratch‐project er in het wild uitziet. Hieruit blijkt dat de meeste
Scratch‐projecten klein en eenvoudig zijn.

Tot slot sluit hoofdstuk 8 dit proefschrift af door al ons werk, dat we in
de verschillende hoofdstukken uit de doeken deden, samen te vatten en
te overpeinzen wat de toekomst kan brengen.

Snel wisselen om
parallelisme na te
boosten is niet
uniek in Scratch:
veel systemen
werken zo.

vi

Summary

Learning to program is hard, and many students find programming
courses hard. As the idiom tells us, practice makes perfect. This is no
different in programming education: it is generally accepted that the best
way to learn programming is through experience. However, to actually
learn something from these experiences, qualitative and timely feedback
is crucial.

Yet providing this feedback on many exercises for many students is
labour‐intensive and time‐consuming. This is why there is a long history
(since at least the early 1960s) of using automation to provide feedback.
The process of providing this feedback is called automated assessment.
In most cases, automated assessment for programming education in‐
volves software testing. The code written by the students for a certain
exercise (we call this a submission) is tested for at least correctness. Of‐
ten, the feedback is more detailed than just a global correct or wrong.

As many have done before us, our department also created an online
platform for automated assessment: Dodona. One of its key features is
the separation between the platform itself (responsible for user man‐
agement, course management, the user interface, etc.) and the judge
(the testing framework responsible for evaluating submissions). Con‐
sequently, Dodona can support almost any programming language. It
currently supports C, Haskell, Java, Kotlin, Prolog, R, Scheme, Bash, C#,
JavaScript, Python, html, sql, Markdown, and Turtle.

While working on and with Dodona, we observed some shortcomings
in existing educational tools for with programming education. A more
detailed look at the educational context and the Dodona platform is given
in chapter 1. In summary, this dissertation attempts to overcome five of
these observed shortcomings.

We observed that a lot of exercises in Dodona are suitable for use in mul‐
tiple programming languages, at least in theory. To actually use them
with another programming language, one must first copy the exercise,
then manually convert the test suite to whatever format is used by the
judge in the target language, and finally change the configuration files
and task descriptions. This is a lot of manual work. Chapter 2 provides a

Long is relative of
course, but
appropriate
considering
programming
education itself
debuted in the
early 1960s.

vii

Summary

solution: tested, an educational software testing framework. Its defin‐
ing feature is the support for creating programming‐language‐agnostic
exercises. This means that one exercise (with a single test suite) can
be solved in multiple programming languages, with support for auto‐
mated assessment. An exercise is thus usable in different programming
languages without any additional work.

With the tested prototype in hand, we then took a step back to look at
what is required to go from a prototype to a viable option for creating
programming exercises. We wanted tested to be the default option for
creating programming exercises for Dodona. As such, it needs to be suit‐
able for educators in both higher and secondary education. This resulted
in the creation of tested‐dsl, presented in chapter 3: a domain‐specific
language for authoring programming exercises with support for auto‐
mated assessment across programming languages. A domain‐specific
language is a format or language specifically designed for one use case,
which is authoring programming exercises here. It turns out that by pay‐
ing special attention to the ergonomics of tested‐dsl, it is also suitable
for exercises that are not intended to be used in multiple programming
languages. For example, we now also recommend tested for educators
looking to author programming exercises that target JavaScript.

Teaching programming to young children is often done differently than
teaching older students, by using visual programming languages. A
visual programming language lets users create programs by manipu‐
lating program elements graphically, rather than textually. The most
popular educational one of these is Scratch. In Scratch, programming
consists of dragging blocks around and clicking them together (not unlike
puzzle pieces or Lego bricks). Since Scratch works with blocks, it is also
called a block‐based language. A more detailed introduction to Scratch
can be found in chapter 4.

Since Dodona supports multiple programming languages, we initially
created a judge (the testing framework) for Scratch within Dodona. How‐
ever, Scratch is not just a programming language, it is also a programming
environment. It thus became clear that the needs for a platform that sup‐
ports Scratch were too different fromwhat we can do in Dodona. For this
reason, we partnered with CodeCosmos, an industrial/commercial part‐
ner. As they are an educational publisherwhose products include Scratch
exercises, they already have a platform for working with Scratch. Addi‐
tionally, they have more experience in creating exercises for Scratch.

Chapter 5 presents Itch, our testing framework for Scratch. It supports
both static tests (meaning a test only looks at the blocks of the program
without executing it) and dynamic tests (where the program is executed
with some inputs and the results are observed). The combination of both

viii

means Itch can test a wide variety of Scratch programs. Scratch is rather
game‐like and exploratory, which encourages children to experiment
and use their fantasy. This does introduce challenges when attempting
to test Scratch programs. For example, if the instructions are “Draw a
house”, how can we verify if the program is correct? Consequently, we
do have to place some limits on what types of exercises Itch can test.
The considerations that go into these decisions are also explained in the
chapter.

When a testing framework like Itch gives feedback to students, everything
is sometimes correct, but more often than not, some test cases fail. At
that point, the debugging process begins: the students have to figure
out what the cause of the failed test is. This is notoriously difficult since
the location of the cause in the program is often not obvious. However,
there are tools to help with this, the main tools being debuggers. For
textual programming languages, there are a lot of debuggers and a lot of
research into debuggers. As an example, Dodona supports a web‐based
debugger for Python.

However, for Scratch and block‐based languages in general, this is not the
case. Therefore, we introduce a new debugger for Scratch in chapter 6:
Blink. Blink supports stepping through the code (i.e. going one step at a
time when running the program), pausing and resuming the execution
of a program, breakpoints (special blocks that automatically pause the
execution when they are executed), and time travelling. A time‐travelling
debugger allows going backwards in the execution by recording program
execution. Every step of the program is saved, so we can go back step‐by‐
step. Since Scratch is used mainly by a young audience, we took special
care to make the debugger intuitive. Initial tests in the classroom show
that students find the debugger intuitive, especially its time‐travelling
feature.

In the previous paragraph, we said the debugger allows going one step
at a time in the program. However, we did not specify what a step means
in the context of Scratch. In Scratch, a project (the program) consists of
different sprites (which are drawn on the screen). Each sprite has its own
code, a set of scripts (a script is a set of connected blocks). Every script
from every sprite can be run concurrently in Scratch. Consequently, we
believe a traditional step in a debugger (advancing one block in a single
script from one sprite) is not ideal. We want the step feature to advance
a single block in every running script across all sprites.

However, due to the way Scratch works internally (the execution model),
advancing a single block in every script is not possible. Scratch uses an
almost‐cooperative threading model, which means it executes multiple
blocks in the same script, then jumps to the next script, and so on. By

ix

Summary

quickly switching between scripts, it looks like scripts execute in parallel.
While this system is designed to prevent someconcurrency‐related issues,
it causes other issues resulting in some unintuitive behaviour.

In chapter 7, we investigate if we canmodify the Scratch executionmodel
in such a way that we can implement the stepping functionality as de‐
scribed above (one block in every script per step), without negatively
affecting performance and behaviour in existing Scratch projects when
executing normally. Since Scratch is so widely used, we cannot introduce
changes that would cause a large part of existing projects to stop working
or behave differently. To properly evaluate this, we also look into what
a typical Scratch project in the wild looks like. It turns out that most
Scratch projects are simple and small.

Finally, chapter 8 concludes this dissertation by summarizing the work
we presented in the various chapters and by reflecting on potential future
endeavours.

Concurrency by
fast switching is
not unique to
Scratch: a lot of
concurrency
works like this.

x

Dankwoord

Het gebeurt wel eens dat een dankwoord van een doctoraatsproefschrift
begint met de vermelding dat het om een werk van lange adem gaat. Dat
is echter niet hoe ik het ervaren heb: aan de start van mijn doctoraat
leken de vier jaar een eeuwigheid, maar nu heb ik het gevoel dat alles
heel snel gegaan is. Ongetwijfeld heeft de steun van collegae, vrienden
en familie hier een groot aandeel in: iedereen weet dat de tijd sneller
gaat als het leuk is. Dat brengt ons bij het doel dezes paragraaf: mijn
dank uiten aan een hele hoop mensen.

Allereerst wil ik mijn promotoren bedanken: prof. Peter Dawyndt, prof.
Bart Mesuere en prof. Christophe Scholliers. Van alle mensen vermeld
in dit dankwoord zijn zij waarschijnlijk degenen die de inhoudelijkste
bijdragen geleverd hebben aan dit proefschrift. Dit gaat dan van de in
regel wekelijkse vergaderingen waar we soms kort, soms lang bepaalde
onderwerpen bespraken, tot de vele suggesties en opmerkingen over
verschillende artikels (en dit proefschrift). Bedankt voor het mogelijk
maken van dit doctoraat, en de voortreffelijke begeleiding en steun die
ik hierbij gekregen heb.

Ik wil ook graag mijn juryleden (de “examencommissie”) bedanken: prof.
Bart Dhoedt, prof. Veerle Fack, prof. Gordon Fraser, and prof. Frank
Neven. Een speciale bedanking ook aan prof. Chris Cornelis om de jury
te willen voorzitten.

Delen van dit proefschrift zijn tot stand gekomen in samenwerking met
ftrprf/CodeCosmos. Hoewel er soms iets misliep, zoals de judge die
plots stopt met werken, ben ik trots op wat we samen verwezenlijkt heb‐
ben. Ik wil dan ook de mensen met wie ik heb samengewerkt bedanken:
Katelijne Duerinck, Kristien Duerinck, Peter Keyngnaert, Cedric Vanha‐
verbeke, Elisa David, Morgane Kruglanski, Jannick Vandaele en Glenn
Thielman.

Hoewel demeeste collegas̓ geen rechtstreekse bijdragen geleverd hebben
aan dit proefschrift, zorgden ze door een toffe werksfeer (en ook buiten
het werk, zoals met het twikend) ervoor dat ik zin had om te blijven wer‐
ken aan de Universiteit Gent. De lange lijst is Alexis Langlois‐Rémillard,
Asmus Bilbo, Benjamin Rombaut, Charlotte Van Petegem, Felix Van der

Ik negeer dat de
tijd ook sneller
gaat naarmate we
ouder worden.

Special thanks to
Gordon for
coming all the way
to Ghent for my
internal defence.

Als de soms wat te
lange koffiepauzes
in overweging
genomen worden
is de bijdrage
misschien soms
negatief.

xi

Dankwoord

Jeugt, Heidi Van den Camp, Jonathan Peck, Jorg Van Renterghem, Louise
Deconinck,MustaphaRegragui, OliverUrs Lenz, PieterVerschaffelt, Rien
Maertens, Robbert Gurdeep Singh, TiboVandeMoortele, Tom Lauwaerts,
Toon Baeyens, Simon Reyntjens en StevenVan Overberghe. Veel van deze
mensen waren al of zijn ondertussen ook vrienden geworden. Ik wil ook
Annick Van Daele bedanken, voor het leuk maken van de werkcolleges
Programmeren, samen met Charlotte en Toon.

Hoe verder in dit dankwoord, hoe verder van het bijdragen aan het proef‐
schrift in se dat ik ga, waardoor ik nu aangekomen ben bij de vrien‐
den die ik tijdens mijn opleiding heb leren kennen: Arne Gevaert, Jarre
Knockaert, Jorg Van Renterghem, Louise Deconinck, Nils Mak, Pieter
Verschaffelt, RienMaertens, Sam Persoon, SanderVanhove, ondertussen
aangevuld met Chloë, Charlotte (Parmentier), Ciel en Liesbeth. Bedankt
voor de vele leuke activiteiten we samen doen.

Pieter, ik denk dat ik niet anders kan dan je nog eens apart te vermel‐
den. Sinds praktisch het begin van de opleiding, nu al tien jaar geleden,
hebben we heel veel samen gedaan. Dit waren soms kleine dingen, zoals
groepswerken, keuzevakken, examentoezichten of gaan eten bij de Griek.
Soms waren het grotere dingen, zoals als we eens op reis gaan. Ik denk
dat onze reis naar Malta en onze tocht door Bulgarije, Griekenland en
Noord‐Macedonië (samenmet Jarre) me nog lang gaan bij blijven. Ik ben
je dankbaar voor al dezemomenten, en ondanks dat we nu voor het eerst
in tien jaar niet meer samen studeren of werken, weet ik dat er nog veel
leuke momenten gaan volgen.

Nog wil ik de vele leden van Zeuswpi bedanken, waar ik tijdens de op‐
leiding veel plezier aan gehad heb, en tijdens de eerste jaren van mijn
doctoraat bij het thuiswerken vanwege de coronapandemie veel uren heb
doorgebracht op Mattermost. De lijst van leden die ik zou kunnen bedan‐
ken is zo lang, dat ik er zelfs niet aan durf te beginnen. Daarnaast wil ik
graagWout Schellaert bedanken ommij te overtuigen een studentenbaan
aan te nemen bij de Dienst StudentenActiviteiten. Ook alle medewerkers
die daar destijds werkten wil ik bedanken, met een speciale vermelding
van Nicolas Vander Eecken.

Tot slot, last but not least, wil ik mijn familie bedanken: mama, papa,
Eliah en Maya, die mij allemaal wat meer of minder geholpen hebben
tijdens mijn doctoraat, hetzij door te helpen verhuizen, hetzij door een
luisterend oor te zijn als het evenminder ging, hetzij doormetmij op reis
te gaan. Mijn ouders in het bijzonder ook ommij alle kansen te geven en
mij te steunen in de keuzes die ik maak, zoals de keuze om informatica
te studeren. Bedankt!

Hydra is mijn
langstlopende
project aan de
universiteit.

xii

Een proefschrift als het mijne is vaak zeer eenzijdig: ik, als auteur, vertel
allerlei dingen en vande lezer verwacht ik hoogstenswat denkwerk.Hoog
tijd om daar verandering in te brengen! In onderstaande woordzoeker
komt elke voornaam van elke vermelde persoon uit dit dankwoord voor.
Als oplossing geeft hij nog mijn laatste boodschap aan de lezer voor de
echte inhoud begint.

V E E B A R T N S S L M A M A C V

P P T U O W O T I I A S M U S E L

E G E Z I O E M E R X M I M E D E

E O R T T V O T R A B E N R A R F

L B R O E N T X I L E F L H H I R

I I A N J R L E T Z E E N A E C A

S T J S A N D E R R N N N I S M N

A N I M A J N E B E E I N L I U K

E V N Y A A N M H L C B L E U S E

N IJ A E G R N P G O I H B S O T T

IJ M P R I E O R L J G E L O L A T

L J O N A T H A N O A O S O R P O

E M E F S E S S R C H N R B E H L

T O R I I I I I P A P A N D E A R

A T R D F P E T R E T E P I O T A

K H I A N N I C K K L E I C C N H

C H A R L O T T E R E V I L O K C

Een kleine aanwijzing: er worden 51 mensen vermeld in dit dankwoord en het
antwoord bestaat uit 38 letters.

xiii

xiv

Table of contents

Samenvatting . iii

Summary . vii

Dankwoord . xi

Table of contents . xv

List of publications . xxi

1. Introduction . 1
1.1. Origins and use of automated assessment in computer

science education . 1
1.2. The Dodona platform . 3

1.2.1. Architecture . 4
1.2.2. Features for educators 5
1.2.3. The feedback table 6
1.2.4. Exercises and content management 6

1.3. Structure of this dissertation 8
1.4. Textual programming languages 9

1.4.1. Programming‐language‐agnostic exercises 10
1.4.2. Ergonomic authoring of exercises 10
1.4.3. Organization of the first part 11
1.4.4. Repositories and user documentation 11

1.5. Block‐based programming languages 12
1.5.1. Testing Scratch code 12
1.5.2. Debugging Scratch code 13
1.5.3. The Scratch execution model 14
1.5.4. Organization of the second part 15
1.5.5. Repositories . 15

I. TESTed 17

2. An educational testing framework 19
2.1. Introduction and background 20

xv

Table of contents

2.2. Related work . 22
2.3. Programming‐language‐agnostic testing frameworks . . . 23
2.4. Using the framework . 25
2.5. Architectural design of the framework 28
2.6. Test suites . 29

2.6.1. Structure of a test suite 30
2.6.2. Data serialization 32
2.6.3. Statements and expressions 34

2.7. Evaluating submissions 35
2.7.1. Correctness and solvability checks 35
2.7.2. Execution planning 37
2.7.3. Generating test code 39
2.7.4. Executing test code 40
2.7.5. Checking test results 41
2.7.6. Static analysis of the submission 42

2.8. Integration with and influences of Dodona 43
2.8.1. Architecture of the Dodona platform 43
2.8.2. Dodona‐provided input for testing frameworks . . 44
2.8.3. The Dodona feedback format 45

2.9. Programming language support 47
2.9.1. Compilation . 47
2.9.2. Execution . 49
2.9.3. Dependencies and other files 49
2.9.4. Configuration and conventions 50
2.9.5. Type support . 51
2.9.6. Stacktraces and compiler outputs 53
2.9.7. Code generation 53

2.10. Evaluation of the tested framework 54
2.10.1. Programming language independence 54
2.10.2. Overhead for exercise authors 57
2.10.3. tested in educational practice 60

2.11. Conclusion . 62

3. A domain-specific language for creating programming exercises . 65
3.1. Background and motivation 66

3.1.1. Educational software testing 66
3.1.2. Programming exercises 67
3.1.3. Input/output testing 68
3.1.4. Unit testing . 69
3.1.5. tested 1.0 . 70
3.1.6. Organization of this chapter 71

3.2. tested‐dsl . 73
3.2.1. Test suite structure 73
3.2.2. Abstract programming language 75

xvi

3.2.3. Language‐specific test suites 75
3.2.4. Language‐agnostic task descriptions 76

3.3. Illustrative examples . 78
3.3.1. Language‐agnostic test suites 78
3.3.2. Language‐agnostic task descriptions 86

3.4. Evaluation . 86
3.4.1. Expressiveness and ergonomics 89
3.4.2. Performance . 91

3.5. Results and contributions 92
3.5.1. Declarative structure 93
3.5.2. Combined input/output and unit testing 96
3.5.3. Language‐agnostic testing 97

3.6. Conclusions and future work 98

II. Scratch 101

4. The Scratch programming environment 103
4.1. The Scratch environment 103

4.1.1. Using the environment and the blocks 104
4.1.2. Data types . 105
4.1.3. Sprites, the object model 106
4.1.4. Inter‐sprite communication 106
4.1.5. Defining custom blocks with procedures 107
4.1.6. Concurrency and parallelism 107

4.2. Organization of the source code 107

5. A testing framework for Scratch 111
5.1. Related work . 112
5.2. Introduction to Itch . 113
5.3. Test suites . 115

5.3.1. Structure of a test suite 117
5.3.2. Before execution 119
5.3.3. During execution 121
5.3.4. After execution 123

5.4. Evaluating projects . 125
5.4.1. Running Itch as a library 126
5.4.2. Running Itch as a command line tool 127
5.4.3. Performance considerations 128

5.5. Format of the generated feedback 128
5.6. Itch in practice . 129

5.6.1. Capabilities of the testing framework 130
5.6.2. Itch in educational practice 131
5.6.3. How to assess Scratch projects 132

xvii

Table of contents

5.6.4. Creating test suites for Scratch exercises 133
5.7. Writing test suites in Scratch 134

5.7.1. Introduction to Poke 134
5.7.2. The Poke extension 134
5.7.3. Feedback in the Scratch environment 138
5.7.4. Comparing Poke to Itch 138
5.7.5. Conclusion and future work 138

5.8. Conclusions . 141

6. A debugger for Scratch . 143
6.1. Motivation and significance 143
6.2. Software description . 144

6.2.1. Stepwise execution 146
6.2.2. Back‐in‐time debugging 146
6.2.3. Programmed breakpoints 147

6.3. Software architecture . 147
6.3.1. Instrumentation for stepping 147
6.3.2. Back‐in‐time debugging 149
6.3.3. Programmed breakpoints 150

6.4. Examples . 150
6.4.1. Maze exercise . 150
6.4.2. Star exercise . 152

6.5. Impact . 153
6.5.1. Related work . 153
6.5.2. Experimental study 154

6.6. Conclusions . 154

7. The Scratch executionmodel 157
7.1. Elements of a Scratch program 158
7.2. Related work . 159
7.3. The current execution model 160

7.3.1. Execution of a Scratch program 160
7.3.2. Implementation details 162

7.4. Limitations of the execution model 164
7.4.1. During general execution 164
7.4.2. Specifically for a debugger 166

7.5. Towards a new execution model 167
7.6. Exploration of Scratch projects 168

7.6.1. Existing analyses 168
7.6.2. A new dataset of Scratch 3.0 projects 169
7.6.3. Analysing Scratch 3.0 projects 169
7.6.4. Use of blocks . 170
7.6.5. Size and complexity 170
7.6.6. Programming concepts 174

xviii

7.7. Evaluation of the new execution model 174
7.7.1. Selection of projects 174
7.7.2. Non‐interactive projects 175
7.7.3. Interactive projects 175
7.7.4. Discussion . 179

7.8. Impact and conclusion 180

8. Conclusions and opportunities 183
8.1. Textual programming languages 183
8.2. Block‐based programming languages 185

Bibliography . 187

A. Task description of the VPW . 201

xix

xx

List of publications

Included in this dissertation

List of publications directly related to this dissertation. As such, the
contents of these publications are included in this dissertation.

Niko Strijbol, Charlotte Van Petegem, Rien Maertens, Boris Sels, Chris‐
tophe Scholliers, PeterDawyndt andBartMesuere (May 2023). “TESTed:
An Educational Testing Frameworkwith Language‐Agnostic Test Suites
for Programming Exercises”. In: SoftwareX 22, p. 101404. issn: 2352‐
7110. doi: 10.1016/j.softx.2023.101404.

Niko Strijbol, Robbe De Proft, Klaas Goethals, Bart Mesuere, Peter Daw‐
yndt and Christophe Scholliers (Feb. 2024). “Blink: An Educational Soft‐
ware Debugger for Scratch”. In: SoftwareX 25, p. 101617. issn: 23527110.
doi: 10.1016/j.softx.2023.101617.

Niko Strijbol, Boris Sels, Charlotte Van Petegem, Rien Maertens, Chris‐
tophe Scholliers, Bart Mesuere and Peter Dawyndt (2024). “TESTed‐
DSL: A Domain‐Specific Language to Create Programming Exercises
with Language‐Agnostic Automated Assessment”. In: Software Testing,
Verification & Reliability. Manuscript submitted for publication.

xxi

https://doi.org/10.1016/j.softx.2023.101404
https://doi.org/10.1016/j.softx.2023.101617

List of publications

Remainder

List of publications by Team Dodona for which I am a co‐author.

Rien Maertens, Charlotte Van Petegem, Niko Strijbol, Toon Baeyens,
Arne Carla Jacobs, Peter Dawyndt and Bart Mesuere (2022). “Dolos:
Language‐agnostic Plagiarism Detection in Source Code”. In: Journal
of Computer Assisted Learning 38.4, pp. 1046–1061. issn: 1365‐2729. doi:
10.1111/jcal.12662.

Charlotte Van Petegem, Louise Deconinck, Dieter Mourisse, Rien Maer‐
tens, Niko Strijbol, Bart Dhoedt, Bram DeWever, Peter Dawyndt and
BartMesuere (Mar. 2023). “Pass/Fail Prediction inProgrammingCourses”.
In: Journal of Educational Computing Research 61.1, pp. 68–95. issn: 0735‐
6331, 1541‐4140. doi: 10.1177/07356331221085595.

CharlotteVanPetegem,RienMaertens,NikoStrijbol, JorgVanRenterghem,
Felix Van Der Jeugt, Bram DeWever, Peter Dawyndt and Bart Mesuere
(Dec. 2023). “Dodona: Learn to Code with a Virtual Co‐Teacher That
Supports Active Learning”. In: SoftwareX 24, p. 101578. issn: 23527110.
doi: 10.1016/j.softx.2023.101578.

Charlotte Van Petegem, Kasper Demeyere, Rien Maertens, Niko Strijbol,
Bram DeWever, Bart Mesuere and Peter Dawyndt (Apr. 2024). Mining
Patterns in Syntax Trees to Automate Code Reviews of Student Solutions for
Programming Exercises. Manuscript submitted for publication. arXiv:
2405.01579. Pre‐published.

Rien Maertens, Maarten Van Neyghem, Maxiem Geldhof, Charlotte Van
Petegem, Niko Strijbol, Peter Dawyndt and Bart Mesuere (May 2024).
“Discovering and Exploring Cases of Educational Source Code Plagi‐
arism with Dolos”. In: SoftwareX 26, p. 101755. issn: 23527110. doi:
10.1016/j.softx.2024.101755.

xxii

https://doi.org/10.1111/jcal.12662
https://doi.org/10.1177/07356331221085595
https://doi.org/10.1016/j.softx.2023.101578
https://arxiv.org/abs/2405.01579
https://doi.org/10.1016/j.softx.2024.101755

Chapter 1.

Introduction

Computer science education research has lately been gath‐
ering momentum. It is now a mainstream area of doctoral
research. Professional conferences catering to it are increas‐
ing in number and ranking. … It signals the maturing of
computer science education.

— acm, ieee, aaai, Computer Science Curricula 2023

Learning to program is hard, and students consequently regard program‐
ming courses as difficult (Robins et al. 2003; Simões and Queirós 2020).
It is generally accepted that gaining a deep understanding of program‐
ming requires experience and feedback (Gomes andMendes 2007; Hattie
and Timperley 2007). This feedback is what makes teaching program‐
ming difficult: it is a time‐consuming task to provide qualitative and
timely feedback on submissions, especially if the number of students
in a course is high (Gulwani et al. 2014; Pirttinen et al. 2018; Queirós
and Leal 2011; Staubitz, Teusner et al. 2017; Tang et al. 2016; Zavala and
Mendoza 2018).

1.1. Origins and use of automated assessment in
computer science education

Education of concepts that we would now consider part of the computer
science discipline goes back as early as the 1940s. Of particular interest to
this dissertation is the education of programming, which began appear‐
ing in curricula during the early 1960s (Simon 2015). This is shortly after
computer science became recognized as its own scientific discipline in
the 1950s and 1960s (Atchison 1971; Denning 2013; Gorn 1963; Hopcroft
1987; Knuth 1974). A good overview on the history of computer science
education is given in Tedre et al. (2018), to which we point the reader for
a complete overview.

1

Chapter 1. Introduction

From the start of programming education, the need for automated as‐
sessment was noted. Generally considered to be the first publication
on automated assessment, Hollingsworth (1960) details their testing
framework and remarks that they could not accommodate the number of
students in their programming classes without their “automatic grader”.
Since then, there has been a long history of using automated assess‐
ment (Ala‐Mutka 2005; Combéfis 2022; Douce et al. 2005; Ihantola et al.
2010; Messer et al. 2024; Nayak et al. 2022; Paiva, Leal et al. 2022).

In itsmost basic form, automated assessment for programming exercises
translates to using some (educational) software testing framework that
will evaluate the submitted code (the submission). The testing frame‐
work determines if a particular submission is correct, based on a set of
tests (the test suite) provided by the educators who created the program‐
ming exercise. The result of this evaluation is the feedback given to the
students.

There is a significant overlap between the software testing frameworks
used in programming education and the ones used in programming con‐
tests, where these frameworks are called (online) judges, a term intro‐
duced by Kurnia et al. (2001). The International Collegiate Programming
Contest (icpc) is considered to be the oldest and most widely known
programming contest. It traces its roots back to the First Annual Texas
Collegiate Programming Championship, held in 1970 at Texas A&M Uni‐
versity. From 1977 until 2017, the contest was held under the auspices of
the Association for ComputingMachinery, and known as acm‐icpc (ICPC
Fact Sheet 2023).

In essence, a testing framework used in educational practice and a com‐
petitionmust do the same thing: evaluating a submission for correctness.
It is therefore not a surprise that judges are heavily used in educational
contexts (Liu et al. 2023; Wasik et al. 2018; Zinovieva et al. 2021). The
differences are mostly found in the focus of the testing frameworks. In
educational settings, evaluating the correctness of a submission itself
is not the main goal. The goal is to provide students with formative
feedback (Caiza and del Alamo 2013; Cavalcanti et al. 2021). Even more,
correctness as the only feedback might not help students in the learning
process (Hao et al. 2021). In a programming contest, the result of an eval‐
uation is often limited to a binary correctness decision: the submission
is accepted or rejected. A second difference is the focus on performance:
in an educational setting, the focus is generally on the performance of
generating the feedback, while in a competition the focus lies on the
performance of the submission. For example, in some programming
contests, a correct submission is expected, but the competition is having
the fastest submission.

2

1.2. The Dodona platform

Another area of interest is the practice of software testing in the software
engineering field. As with educational software testing, the essential
purpose of software testing is correctness (Pan 1999). The desired or
correct behaviours are specified as the functional requirements of the
program and say how a programmust behave (Bass et al. 2021). Other
software quality factors (the non‐functional requirements) that may be
tested are its functionality (reliability, usability, integrity), engineering
(efficiency, testability, documentation, structure) and adaptability (flex‐
ibility, reusability, maintainability) (Hetzel 1988).

What makes educational software testing different is that each program‐
ming exercise has a fixed specification, against which multiple submis‐
sions must be evaluated (Wilcox 2016). Submissions are usually small to
moderate in size, with all source code contained in a single file. While
educational software testing also evaluates submissions for correctness,
correctness itself is againnot themain goal. Instead, the goal is to provide
formative feedback (or a grade) to the students (Caiza and del Alamo
2013).

1.2. The Dodona platform

In this section, we discuss our programming coursemanagement system.
For a full overview of these systems, we point the reader to Messer et
al. (2024). Some noteworthy ones are Mooshak, UVa Online Judge, Sphere
Online Judge,Kattis, Jutge.org, andArTEMiS (Enstromet al. 2011; Kosowski
et al. 2008; Krusche and Seitz 2018; Leal and Silva 2003; Petit et al. 2018;
Revilla et al. 2008).

As mentioned in the previous section, providing qualitative and timely
feedback to students in programming courses almost necessitates a form
of automation. This is no different for courses taught by our department.
Feedback was initially (since 2011) provided using the Sphere Online
Judge (Kosowski et al. 2008), whichwas relatively unique in that it allowed
teachers to create their own courses, exercises, and even testing frame‐
works. However, the platform targets the organization of programming
contests and lacks support for features we wanted to introduce in our
programming classes.

In 2016, the needs for these classes outgrew the Sphere Online Judge,
which led to the creation of our own platform: Dodona (Van Petegem,
Maertens et al. 2023). Dodona is now used by most higher education

As a student, I was
part of one of the
last graduation
years to use spoj
(that statement
makes me feel
old).

3

Chapter 1. Introduction

institutions in Flanders and by many schools providing secondary edu‐
cation. As of August 2024, Dodona has more than 70 000 registered users
and has evaluated 18.5 million submissions.1

The need for supporting multiple programming languages has also been
noted from almost the start of using automated assessment for program‐
ming exercises (Hext andWinings 1969). Dodona has been developed
with support for multiple programming languages from the start. It
has a strict separation between the platform (responsible for managing
courses, students, and exercises) and the testing framework (determin‐
ing if submissions are correct). This separation has made supporting
a multitude of programming languages relatively easy. Within Dodona,
a testing framework is called a judge (and evaluating a submission for
correctness is called judging), as it is called in the Sphere Online Judge.

While the earliest Dodona judges targeted Python and JavaScript sub‐
missions, its interface for judges proved to be generic enough that it
now supports a multitude of scenarios. For example, there are currently
judges for C, Haskell, Java, Prolog, R, Scheme, Bash, C#, JavaScript, and
Python. There are also a few less straightforward judges, for html, sql,
Markdown, and Turtle.

1.2.1. Architecture

The separation between the Dodona platform and its judges is also re‐
flected in its architecture. The platform itself is a fairly standard web
application written in Ruby on Rails. The web application follows the
recommendations by Rails: it uses a model‐view‐controller architecture.
Most pages, especially simpler ones, use server‐side rendering. More
recently, complex pages have been added that use web components.

Evaluating submissions has some performance and security consider‐
ations (Wasik et al. 2018), as a submission is untrusted code that is ex‐
ecuted. Dodona solves this by running the evaluation completely inside
a dedicated Docker container (Peveler et al. 2019).

The Docker containers run on a dedicated pool of worker servers. Us‐
ing dedicated workers, a misbehaving submission has no effect on the
stability of the platform itself. Using worker servers also allows for easy
scaling if the number of submissions increases.

1https://dodona.be/en/about/

4

https://dodona.be/en/about/

1.2. The Dodona platform

At a high level, an evaluation of a submission goes through the following
process:

1. The submission is saved, and a job is started to perform the evalu‐
ation.

2. A predefined and judge‐specific Docker image is used to create a
Docker container. In this container, all dependencies for the judge
are available.

3. A temporary directory is created by Dodona containing the sub‐
mission, the test suite for the relevant exercise, and (optionally)
additional exercise‐specific resources.

4. This folder is mounted in the container.
5. The judge runs inside the Docker container, using a well‐defined

interface containing some metadata for the judge.
6. During the evaluation, the judge outputs the feedback in a well‐

defined format on standard output.
7. The output is captured and saved, afterwhich the feedback is shown

on Dodona.

1.2.2. Features for educators

Besides automated assessment, Dodona provides a host of features to
support educators when organizing programming courses.

To start, Dodona supports a sophisticated course and user management
system. Educators can request that their account beupgraded to a teacher
account, which grants access to additional capabilities, like creating and
managing courses, but also access to the sample solution for exercises.
Courses on Dodona are created to reflect courses in real life, and are
linked to an academic year. Students can then subscribe to their rel‐
evant courses. A course consists of a number of series, which in turn
contain some exercises, allowing for the creation of learning paths in
the course.

Within a course, Dodona provides detailed statistics and data visualiz‐
ations of the progress students make in a course and for each series.
Dodona has a large amount of data about students, which has also al‐
lowed for interesting research. For example, Van Petegem, Deconinck
et al. (2023) attempt to predict if students are at risk of failing the course,
which would allow early intervention by the teaching staff.

Besides the automated feedback, Dodona allows students to ask ques‐
tions on their submissions (if enabled by the educator for a specific
course). This allows the teaching staff to answer these questions directly

5

Chapter 1. Introduction

in Dodona, with all the relevant context (the submission itself and the
feedback the students got). At the same time, the submission history of
the students is also available.

The same underlying mechanism used for the questions can also be
used by educators to add annotations to submissions. This is especially
useful in Dodonas̓ “evaluation mode”, which is designed to facilitate
grading of submissions. Besides adding annotations to submissions (we
are researching if predicting these annotations is possible; Van Petegem,
Demeyere et al. 2024), assigning a grade to a submission using a rubric
is also possible. We use this mode ourselves to organize exams as fol‐
lows. A special series is shared with students at the start of an exam.
This series contains the exercises that students need to solve. After the
deadline, Dodona can automatically select the latest submission before
the deadline for each student. We then manually provide feedback and
grades on these submissions. After we have processed all submissions,
we release the feedback to the students, who can then view the feedback
and grade they received.

1.2.3. The feedback table

One of the most important actionable components for both students
and educators is the feedback table (figure 1.1). This feedback table
is flexible enough to accommodate a wide variety of feedback. In the
example, three types of feedback are illustrated: the difference between
the expected and generated return value, a custom message, and an
image.

As the feedback table shows customdata froman exercise or judge, which
are not necessarily trusted, special attention has been paid to make the
feedback table secure. For example, all content is rigorously sanitized to
prevent cross‐site scripting attacks (S. K. Gupta and B. B. Gupta 2017).

1.2.4. Exercises and content management

Dodona currently supports two types of “learning activities”: program‐
ming exercises and reading activities. A reading activity requires no
submission, but students can mark them as read to confirm they did
the reading. Programming exercises allow students to submit code and
receive feedback on their submissions. However, the bar for what con‐
stitutes code can be low. For example, Dodona has a Markdown judge,

6

1.2. The Dodona platform

Submission results

Submission #5 for Curling by Niko Strijbol

󰅖
Wrong
32 tests failed
less than a minute ago

today #5 󰅖 Wrong · 32 tests failed
#4 󰅖 Wrong · 31 tests failed
#3 󰅖 Wrong · 61 tests failed
#2 󰄬 Correct · All tests succeeded

#1 · 󰅖Wrong Debug

󰅖 score([(20.0, 10.0, 'R'), (25.0, 22.0, 'Y'), (42.0, 37.0, 'R')])

return

󰜻 Your output 󰈖 Expected output

1 [1, 0] 1 (1, 0)

Error: expected return type tuple

󰅀

#2 · 󰄬 Correct Debug

󰅀

󰤌

32/64 correct: 󰅖 󰄬 󰄬 󰅖 󰅖 󰄬 󰄬 󰄬 󰅖 󰅖 󰄬 󰄬 󰄬 󰄬 󰅖 󰅖 󰄬 󰄬 󰅖 󰄬 󰅖 󰅖 󰄬 󰅖

󰅖 󰅖 󰅖 󰄬 󰅖 󰅖 󰅖 󰅖 󰄬 󰅖 󰄬 󰄬 󰅖 󰅖 󰄬 󰅖 󰄬 󰄬 󰄬 󰄬 󰅖 󰄬 󰅖 󰅖
󰈈 󰤻󰈉 󰤼

Isinside Isvalid Score 32 Code

Figure 1.1. An example of the feedback table for an incorrect Python submission
for the exercise Curling on Dodona. The feedback is split into three tabs (the
fourth tab, “Code”, contains the submission itself). As can be seen below the
”Score” tab, only 32 of the 64 test cases are correct. The figure shows the first
two test cases from the “Score” tab, the first of which is incorrect: the function
should have returned a tuple, but returned a list instead. Besides showing
the difference between the expected and actual value, Dodona also allows
showing more information. In this case, a visual rendering of the curling
position is given to aid students in debugging their code.

7

Chapter 1. Introduction

which generates a rendered (html) version of the Markdown code sub‐
mitted by students, without automatically evaluating anything more
than the validity of the Markdown. Dodona can thus be used to collect
plain text submissions from students. Learning activities fully support
internalization: Dodona currently supports Dutch and English.

Exercises in Dodona are managed in Git repositories. A repository with
a well‐defined structure is usable as the source for exercises in Dodona.2
This allows educators to be the owners of their exercises, in addition
to all the other benefits of version control. Every time an exercise is
updated in the repository, Dodona will synchronize the exercises on the
platform with the exercises in the repository.

Besides a test suite, which is needed for automated feedback, program‐
ming exercises also need a problem statement that specifies what stu‐
dents should do. InDodona, a problemstatement is aMarkdownorhtml
file, in which educators have free rein to describe their exercise. The
programming exercise (including a problem statement and test suite),
together with a judge (the Docker image and the testing framework) form
a task package as defined by Verhoeff (2008).

1.3. Structure of this dissertation

The main problem this dissertation addresses is the observation that
there are shortcomings in existing educational tools for programming
education. Most of these shortcomings were first observed when using
Dodona. They can be split into five main research questions:

RQ1 Can we design an educational software testing framework that sup‐
ports automated assessment across programming languages based
on a single test suite?

RQ2 What is the most ergonomic way to author programming exercises
with support for automated assessment across programming lan‐
guages?

RQ3 Can we design an educational software testing framework for the
block‐based programming language Scratch?

RQ4 Can we design an (educational) debugger for the block‐based pro‐
gramming language Scratch?

RQ5 What common executionmodel for running and debugging Scratch
code best optimizes both scenarios?

2https://docs.dodona.be/en/references/repository-directory-structure/

8

https://docs.dodona.be/en/references/repository-directory-structure/

1.4. Textual programming languages

The first two questions relate to textual programming languages, while
the last three questions are in the context of Scratch, a visual block‐based
language. The reason for this split is that it became clear that the needs
for textual and block‐based programming languages are different enough
to warrant a separate approach.

This split is reflected in the structure of this dissertation as well. Part I
is about textual programming languages and consists of two chapters
(chapters 2 and 3), which answer the first and second questions respect‐
ively. Section 1.4 gives an introduction to this first part. Part II is about
the block‐based programming language Scratch. The smaller chapter 4
gives a short introduction to Scratch. Chapter 5 addresses question three,
while chapter 6 address the fourth question. Chapter 7 then answers the
fifth question. Section 1.5 gives an introduction to this second part.

Finally, chapter 8 summarizes the answers to the research questions and
highlights some future opportunities. Each chapter also contains its own
conclusion where the details for that specific chapter are discussed.

The remainder of this chapter gives a high‐level overview of each part:
the context, motivation, and where applicable, our previous publications.
Similar to the conclusions, each chapter also has its own introduction,
where the specifics for that chapter are introduced.

1.4. Textual programming languages

The first research question (RQ1) was inspired by the observation that us‐
ing exercises and judges in Dodona required somemanual work: “Canwe
design a testing framework that supports automated assessment across
programming languages with a single test suite?”. A lot of programming
exercises on Dodona seem usable in multiple programming languages,
at least in concept.

Actually using an exercise in another programming language first re‐
quires a copy of the exercise to be made. Then the existing test suite
must be converted manually to the test suite format used by the judge for
that particular programming language. The other parts of the exercise
(the configuration and task description) also need to be converted manu‐
ally. Additionally, since the exercises are copied, the exercises have to
be kept in sync manually, or they risk diverging.

Implementing judges for different programming languages is also re‐
petitive. For each judge, a new test suite format has to be created, and
all other tasks that a judge does (e.g. test scheduling, output handling)

9

Chapter 1. Introduction

have to be re‐implemented for each new judge. Supporting a new feature
also requires doing it for every judge, which often does not happen in
practice.

1.4.1. Programming-language-agnostic exercises

The answer to the first research question (RQ1) is tested, an educational
software testing framework we created. Its defining feature is the ability
to create programming‐language‐agnostic exercises. This means that the
same exercise (with one test suite) can be solved in multiple program‐
ming languages, with support for automated assessment.

tested is discussed in chapter 2, which is based on Strijbol, Van Petegem
et al. (2023). Compared to the original publication, the chapter has been
expanded with more information about the inner workings of tested, in
addition to goingmore in‐depth on technical aspects of the framework.

1.4.2. Ergonomic authoring of exercises

With a working prototype at hand, the second research question (RQ2)
came rather naturally: “What is the most ergonomic way to author ex‐
ercises with support for automated assessment across programming
languages?”. We took a step back to look at what is required to go from a
prototype to a viable option for creating programming exercises. This
analysis aimed to ensure the exercises could be used in educational prac‐
tice, including high‐stakes tests such as exams. We want tested to be
suitable for both educators in higher education and secondary educa‐
tion. Our ambition was to make tested the default option for creating
programming exercises in Dodona.

The result of this research is presented in a second publication: Strijbol,
Sels et al. (2024). It is included almost verbatim as chapter 3. By looking
at (educational) software testing more broadly, we find twomissing parts
of the process of creating programming exercises. The first missing and
most important part is an ergonomic and approachable way of creating
test suites for exercises. Our solution is tested‐dsl, a domain‐specific
language for authoring programming‐language‐agnostic exercises with
support for automated assessment. The second missing part is support
for language‐agnostic task descriptions. We show that tested‐dsl can
also be used for task descriptions.

A new insight while working on tested‐dsl was that tested is not only
useful for creating programming‐language‐independent exercises, but

A doctoral
dissertation has
no page limit,
after all.

10

1.4. Textual programming languages

is also suitable for exercises that are not intended to be used in multiple
programming languages. Therefore, we have taken special care to design
tested‐dsl to be useful for a wide audience of educators, including
higher and secondary education. For this reason, we also invested in our
documentation, which contains reference documentation and a set of
tutorials for commonly used exercise types.

1.4.3. Organization of the first part

Chapter 2 discusses tested and chapter 3 discusses tested‐dsl, both
based onprevious publications. One consequence of this approach is that
there is some overlap: for example, the introductions in both chapters
broadly cover the same topic. However, the focus of both is different
enough that we feel there is no problem including both. Another ex‐
ample of a consequence is the terminology used for the levels in the test
suites (sections 2.6.1 and 3.2.1), which differs. The first chapter uses the
terminology as used by Dodona, while the second chapter changes the
terminology in the domain‐specific language to align more closely with
the terminology used in the literature. This illustrates the progressive
insight that comes when working on a tool, and the interplay between
the design stages and its application in practice.

Research on tested was started in 2019 as a master s̓ thesis (Strijbol,
Dawyndt et al. 2020), as was tested‐dsl in 2021 (Sels et al. 2021).

1.4.4. Repositories and user documentation

As a software project, the source code for tested is important, if notmore
important than this dissertation. Both tested and tested‐dsl share the
same repository, which is published under the mit licence.3 Two sets of
documentation are available, aimed at a different target audience:

• The guides for educators wanting to create programming exer‐
cises.4 Most of these guides are currently only available in Dutch.

• The reference documentation, for a more in‐depth look into more
technical subjects.5 For example, this includes the documentation
on how to extend tested to add support for additional program‐
ming languages.

3https://github.com/dodona-edu/universal-judge
4https://docs.dodona.be/en/guides/exercises/
5https://docs.dodona.be/en/references/tested/

11

https://github.com/dodona-edu/universal-judge
https://docs.dodona.be/en/guides/exercises/
https://docs.dodona.be/en/references/tested/

Chapter 1. Introduction

1.5. Block-based programming languages

For young students, learning to program is often done with specialized
programming languages. The most‐used language in this context is
Scratch, a visual block‐based programming language (Resnick, Maloney
et al. 2009).

SinceDodona is independent of any testing framework, we thus asked the
third research question (RQ3): “Can we design an educational software
testing framework for Scratch?”. Our intention was to add support for
Scratch to Dodona.

1.5.1. Testing Scratch code

The first prototype of Itch, our testing framework for Scratch, did just
that: it added support for evaluating Scratch submissions in Dodona.
However, Scratch is not only a programming language, but a complete
programming environment (Maloney et al. 2010). We realized that prop‐
erly supporting Scratch required accommodations that were too differ‐
ent from what Dodona could (or would) provide. Additionally, while
our group had experience with programming exercises for text‐based
languages, we had much less experience with Scratch in an educational
context.

To address these issues, we sought an industrial and commercial part‐
ner. We found this partner in CodeCosmos, the international brand of
ftrprf, which is an educational publisher that creates, among other
things, teaching packs. Schools can use these to fulfil their obligations as
part of the move to introduce more computational thinking in secondary
education.

Theworkwasdivided as follows: GhentUniversitywas responsible for the
technical aspects of the automated feedback for Scratch exercises, while
CodeCosmos provided the lessons, the educational support, and last but
not least, actual students to use the teaching packs. Readers interested
in knowing more might like to read an article about this collaboration in
Dare To Think, Ghent University s̓ online magazine.6

The testing framework Itch, the answer to the third research question,
is described in chapter 5. Itch allows both static and dynamic tests on

6https://www.durfdenken.be/en/research-and-society/
coach-codi-boosting-tool-helps-children-become-independent-coders

12

https://www.durfdenken.be/en/research-and-society/coach-codi-boosting-tool-helps-children-become-independent-coders
https://www.durfdenken.be/en/research-and-society/coach-codi-boosting-tool-helps-children-become-independent-coders

1.5. Block‐based programming languages

Scratch exercises, which provides a lot of flexibility to educators. Dy‐
namic testing, in particular, allows for exercises that support (within
limits) the exploratory nature of Scratch.

Itch test suites for Scratch exercises are written in JavaScript. While
working with CodeCosmos on creating Scratch exercises, it became clear
that the JavaScript test suites were a big hurdle for educators without a
computer science background. As a lot of software testing frameworks
are written in the same programming language as the code they test,
we also explored this approach. The result of this is Poke, a prototype
of a testing framework for Scratch with test suites written in Scratch,
discussed in section 5.7. While technically feasible, there are still open
questions regarding the practical use of this approach in an education
setting.

1.5.2. Debugging Scratch code

The goal of educational software testing and automated assessment is to
provide students with feedback on their code. However, the feedback
in itself is not enough: we want students to be able to use that feedback
and be able to correct their code if something went wrong. The next
step, after a failed test, is to debug the submission, which is a two‐step
process (Myers et al. 2012). Step one is determining the exact nature and
location of the error, and step two is fixing said error.

It is well known that determining the cause of an observed failure is
challenging (Ammann and Offutt 2016). The debugging process is diffi‐
cult, especially for novice programmers (McCauley et al. 2008). This has
led to the creation of various tools to help with this, chief among them
debuggers (Rosenberg 1996).

This is also the case with text‐based languages. For example, this is why
figure 1.1 shows a “Debug” button in the feedback table of Dodona. How‐
ever, for Scratch, this area is much less developed. The fourth research
question (RQ4) thus became: “Can we design a debugger for Scratch?”.

Chapter 6 discusses our answer to this question, in the form of Blink,
our time‐travelling debugger for Scratch. A time‐travelling debugger
allows the programmer to go back in the execution, often by recording
program execution (Balzer 1969; Barr and Marron 2014; Barr, Marron
et al. 2016; Chen et al. 2001; Crescenzi et al. 2000; Czaplicki and Chong
2013; Ungar et al. 1997). We took special care to make the debugger
intuitive for the young target audience of Scratch. Initial experiments in
the classroom show that children do in fact find the debugger intuitive

13

Chapter 1. Introduction

and useful, particularly stepping through the code and the time travel
feature.

This chapter is a minimally modified copy of the publication Strijbol,
De Proft et al. (2024).

1.5.3. The Scratch executionmodel

While working on the debugger, we also began looking more deeply into
the Scratch execution model. The Scratch execution model combines a
fixed‐step time loop (30 frames per second) with an almost‐cooperative
threadingmodel. Thismeans that threads are seldom interrupted,mostly
relying on explicit yielding to other threads.

This threading model was chosen because it minimizes the occurrence
of some race conditions, although concurrency‐related issues still oc‐
cur (Maloney et al. 2010). The cooperative nature of the threading model
also has drawbacks: it can lead to unexpected behaviour when working
with multiple sprites.

Additionally, the execution model also limits how a debugger can work,
without resorting to deviating from the execution model as used during
normal execution.

We thus asked ourselves, “What execution model for running and de‐
bugging Scratch code best optimizes both?” (RQ5). We investigate and
answer this question in chapter 7. The chapter begins with a detailed
look at how the current execution model behaves, followed by our pro‐
posed changes. Since Scratch is so widely used, our changes should not
negatively impact existing Scratch programs. We therefore analyse what
a typical Scratch project looks like. Finally, we run some preliminary
benchmarks with our proposed changes and report on the results.

While we initially set out to find the replacement for the executionmodel,
we no longer believe that a single replacement is possible. Scratch pro‐
grams, especially larger ones, rely on the current behaviour of the exe‐
cution model, meaning any change to this behaviour would constitute
a breaking change. The proposed changes are still useful, but in more
specialized contexts, instead of a general replacement. For example, the
proposed changes enhance the use of the debugger. Smaller programs
are much less affected by our proposed changes, and most programs are
small.

14

1.5. Block‐based programming languages

1.5.4. Organization of the second part

The second part starts with chapter 4, which introduces Scratch, the
programming language and environment. Next, chapter 5 discusses Itch
and Poke, our Scratch testing frameworks. Chapter 6 then discusses
Blink, our debugger for Scratch. Finally, chapter 7 discusses the Scratch
execution model, our proposed changes to it, an analysis of Scratch
projects, and an evaluation of our proposed changes.

Workon these various tools for Scratch oftenbegan as amaster thesis (Cat‐
toire et al. 2024; De Proft et al. 2022; Goethals et al. 2023; Mak et al. 2019;
Voeten et al. 2023).

1.5.5. Repositories

The source code of Itch is not publicly available at this time due to the
agreement with our partner CodeCosmos. The source code for Blink is
available under the same licence as Scratch, the bsd 3‐Clause “New” or
“Revised” Licence.7 We also host an online instance of the debugger.8

Our JavaScript implementation of an analysis tool for Scratch 3.0 (similar
to Hairball; Boe et al. 2013) is available under the mit Licence.9

7https://github.com/scratch-ed/blink
8https://scratch.ugent.be/blink/
9https://github.com/scratch-ed/scratch-analysis

15

https://github.com/scratch-ed/blink
https://scratch.ugent.be/blink/
https://github.com/scratch-ed/scratch-analysis

16

Part I.

TESTed

17

18

Chapter 2.

An educational testing framework
with language-agnostic test suites
for programming exercises

Testing leads to failure, and failure leads to understanding.
— Attributed to Burt Rutan

In educational contexts, automated assessment tools are commonly used
to provide formative feedback on programming exercises. However,
designing exercises for automated assessment tools remains a laborious
task or imposes limitations on the exercises. Most automated assess‐
ment tools use either output comparison, where the generated output
is compared against an expected output, or unit testing, where the tool
has access to the code of the submission under test. While output com‐
parison has the advantage of being programming language independent,
the testing capabilities are limited to the output. Conversely, unit testing
can generate more granular feedback, but is tightly coupled with the
programming language of the submission.

In this chapter, we introduce tested, which enables the best of both
worlds: combining the granular feedback of unit testing with the pro‐
gramming language independence of output comparison. Educators can
save time by designing exercises that can be used across programming
languages. We begin by giving a brief introduction and considering some
related work.

We focus next on the technical aspects of tested, beginning with its
architectural design. Next, we consider the three parts of evaluating a
submission: the test suite, the evaluation process itself, and the gener‐
ated feedback.

For the test suites, we discuss their structure, and look at how tested
handles datatypes (across different programming languages), statements,
and expressions. Next, the evaluation process is discussed in detail.

Note that tested
now supports a
user‐friendlier
test suite format:
tested‐dsl
(chapter 3).

19

Chapter 2. An educational testing framework

This is the process through which tested executes the test suite and
determines the feedback that will be given on the submission. We also
briefly look at the integration with Dodona. This is relevant, as tested
inherits some aspects from Dodona, such as the feedback format. As a
conclusion to the technical part, we discuss in detail how support for
multiple programming languages is achieved. We look at the internal
api to give a good idea of what is required to support new programming
languages.

Finally, we evaluate tested in educational practice. We report on three
quasi‐experiments where we asked students to solve a set of program‐
ming exercises andautomatically reviewed their submissionswith tested.

2.1. Introduction and background

Formative feedback on solutions for programming exercises is a crucial
part of learning to code (Luxton‐Reilly et al. 2018; Orrell 2006; Shute 2008).
Feedback is formative (and most valuable) if learners receive rich and
qualitative feedback throughout the learning process (Black andWiliam
2009). Providing such feedback by hand is a challenge for educators
since it is a time‐consuming activity (Campos et al. 2012; Cheang et al.
2003; Edwards et al. 2008; Gulwani et al. 2014; Hao et al. 2021; Keuning
et al. 2018; Pirttinen et al. 2018; Staubitz, Teusner et al. 2017; Tang et al.
2016; Zavala and Mendoza 2018). The challenge is further exacerbated
by a large number of students who work on multiple exercises (Camp
et al. 2017; Sax et al. 2017). Any laborious and time‐consuming activity
is a prime target for automation, and providing feedback is no differ‐
ent. The computer science education field therefore has a long history
of applying software testing frameworks or general‐purpose software
tools (linters, formatters, etc.) on source code to automatically generate
feedback (Edwards 2004; Hao et al. 2021; Keuning et al. 2018; Paiva, Leal
et al. 2022).

Off‐the‐shelf tools such as linters are low effort for educators, but only
provide generic feedback: there is no exercise‐specific feedback. Soft‐
ware testing frameworks require an accompanying test suite for each
individual programming exercise, which means they require a lot more
effort to create. However, they can provide muchmore specific feedback.
A test suite typically contains a set of tests that verify if the submission
satisfies the requirements in the task description of the exercise. This
is similar to the practice of unit tests or integration tests in the software
engineering field. Besides general testing frameworks, computer science
education also uses judge systems (Paiva, Leal et al. 2022; Wasik et al.

20

2.1. Introduction and background

2018): specialized learning environments that provide rich feedback.
Defining an adequate test suite for an exercise is part of the reason why
creating programming exercises is so time‐consuming (Gulwani et al.
2014; Pirttinen et al. 2018; Queirós and Leal 2011; Staubitz, Teusner et al.
2017; Tang et al. 2016; Zavala and Mendoza 2018).

An apparent solution to reduce the amount of time needed to create
programming exercises is to create fewer exercises. To achieve this
without reducing the number of exercises available to students, maximal
reuse of existing exercises is necessary. Existing solutions to facilitate
reusing exercises include standard formats in which exercises are writ‐
ten (Paiva, Queirós et al. 2020; Verhoeff 2008), open repositories with
exercises (Staubitz, Teusner et al. 2017), or tools to convert between
existing exercise formats (Queirós and Leal 2013). However, reusing
exercises remains difficult, particularly when attempting to reuse exer‐
cises across programming languages. In most existing judge systems,
exercises are tightly coupled to the programming language in which the
test suite is written. Alternatively, test suites without such tight coupling
impose stringent restrictions on exercise specifications, for example only
reading from standard input and writing to standard output. Because of
these restrictions, they often generate feedback of a lower quality than
programming‐language‐specific test suites.

To reuse programming exercises written for another programming lan‐
guage, exercise designers first have to learn a new testing framework for
that programming language. Then, they have to write a new test suite for
the exercise according to the specifications of the new testing framework.
Alternatively, due to the vast number of programming languages (Bis‐
syande et al. 2013), it might be necessary to implement a new testing
framework to support educational software testing, which is no small
undertaking.

We focus on facilitating easy reuse of programming exercises across pro‐
gramming languages. Our contributions include defining requirements
for a testing framework to support multiple programming languages,
without imposing strict restrictions on programming exercises. We also
introduce tested, a proof‐of‐concept of a system that satisfies these re‐
quirements. tested directly supports multiple programming languages
for the same exercise, meaning the conversion of exercises to multiple
testing frameworks is no longer needed. Exercise designers working
on exercises for a single programming language can also benefit from
tested, as it no longer forces them to learn new testing frameworks
for each new target language. Finally, implementing support for new
programming languages in tested is less work than implementing a

21

Chapter 2. An educational testing framework

complete testing framework for each language, reducing the software
development and maintenance cost dramatically.

2.2. Related work

Since the terminology related to automated feedback on programming
exercises is not used consistently within the field, we begin by defining
the terms used in this chapter. A programming exercise is the combina‐
tion of a task description and a test suite. When students attempt to solve
the exercise using the instructions from the task description, they create
a submission for the exercise. The test suite is used by a judge system to
evaluate the submission. This results in feedback that is shown to the
student.

We consider it useful to split a judge system into a judge platform and
a testing framework. A judge platform is a graphical user interface
that allows students and educators to upload and store submissions,
display feedback, organize exercises into courses, and so on. A testing
framework is responsible for generating feedback, by executing and
evaluating submissions based on a test suite. In existing literature, the
distinction between these two is not always made, nor is it always rel‐
evant. For example, some review papers (Keuning et al. 2018; Wasik
et al. 2018) or individual tools (Bez et al. 2014; Petit et al. 2018) consider
the entire system as a whole. Other papers focus specifically on judge
platforms (Gusukuma et al. 2020; Striewe 2016). However, we believe
this distinction to be relevant, as evaluating submissions (the testing
framework) has a separate set of challenges compared to judge platforms
(for example, displaying feedback in a constructive way). This chapter
focuses on testing frameworks.

In educational contexts, software testing frameworks typically use either
output comparison (also known as input/output testing) or unit test‐
ing (Paiva, Leal et al. 2022) to evaluate submissions. Programming
language support of testing frameworks generally depends on the ap‐
proach they adopt. With unit testing, the test suite is often written in the
same programming language as the submission, e.g. with tools based
on xUnit (Meszaros 2007). Since the test suite is often written in the
same programming language as the submission, it has full access to the
submission. The test suite can use function calls, data structures (e.g.
lists, maps), primitive data types (e.g. integers, strings), examine return
values, exceptions, runtime inspections (e.g. reflection), etc. As a res‐
ult, the test suite is tightly coupled to a specific programming language.
Evaluating a submission for the same exercise in another programming

22

2.3. Programming‐language‐agnostic testing frameworks

language would require a new test suite, often also involving another
testing framework.

With input/output testing, the judge system imposes stringent restric‐
tions on the programming exercise: only standard input, standard out‐
put, standard error, and files can be used for input and output. Prom‐
inent examples are the testing frameworks used in icpc‐style (Inter‐
national Collegiate Programming Contest, sometimes still referred to as
acm‐icpc) (ICPC Fact Sheet 2023) programming contests. While this
does make the test suites independent of any programming language,
all aspects of the submission that the test suite needs to check must be
converted to a textual representation. Another disadvantage is the lack
of granular testing: with these systems, tests are limited to the program
as a whole. It is, for example, not possible to add distinct tests for dif‐
ferent functions inside the same program without obligating students to
artificially split the program.

Wanting to support multiple programming languages is not new: Hext
andWinings (1969) describe an early automated assessment system that
supports multiple programming languages. While it supports more than
just input/output testing, it does not support a single test suite: every pro‐
gramming languages requires its own test code (the system was limited
to two tests). The reporting of the results was, however, unified across
programming languages.

2.3. Programming-language-agnostic testing
frameworks

Intuitively, an ideal testing framework that supports multiple program‐
ming languages is a testing framework with the testing capabilities of
unit testing and the programming language support of input/output test‐
ing. First, we define the two requirements a framework needs to satisfy
to achieve this. We also look at the consequences of those requirements
on the framework. We call a testing framework that satisfies these re‐
quirements a programming‐language‐agnostic testing framework.

The first requirement is that test suites must be programming language
agnostic. A test suite must be usable to evaluate submissions in every
programming language supported by the framework, without making
changes to the test suite or adding language‐specific tests to it. As a
consequence of this requirement, adding support for new programming
languages to the testing frameworkmust not demand changes to existing

23

Chapter 2. An educational testing framework

test suites. All existing test suites must work with the new programming
language without changes.

The second requirement is that the frameworkmust have testing capabil‐
ities similar to those of unit testing frameworks. Some concrete examples
of what should be possible are:

• Using standard input, standard output, and standard error.

• Calling functions implemented in submissions, and passing argu‐
ments to those functions.

• Evaluating values returned from function calls (with data type sup‐
port).

• Creating objects (constructors) and manipulating them (methods).

• Capturing and evaluating other side effects such as exceptions, exit
codes or files (or other persistent storage such as databases).

• Supporting exercises with deterministic and non‐deterministic (e.g.
random) behaviour.

Support for these two requirements should not have disproportionately
large drawbacks. Therefore, we also consider the following soft require‐
ments for a programming‐language‐agnostic testing framework:

• Authoring exercises using the framework should not be signific‐
antly more difficult than authoring exercises using a language‐
specific testing framework.

• Runtime andmemory overhead should beminimal: the framework
cannot be unacceptably slow or have a large memory footprint
compared to a language‐specific testing framework. Providing
feedback to students in a timely manner is important.

• Submissions should follow their language‐specific conventions as
closely as possible. For example, supporting asynchronous and
synchronous functions in JavaScript, or top‐level functions should
be implemented as a static function in Java, but not in Python or
Kotlin that have proper support for top‐level functions.

• Adding support for new programming languages to the framework
should ideally be faster than implementing language‐specific test‐
ing frameworks for those languages, due to the ability to reuse
shared parts of the implementation.

24

2.4. Using the framework

The next sections introduce tested, our implementation of such a frame‐
work. We begin by showing an example of how tested is used, to give a
good idea of what tested does. Afterwards, the various parts of tested
are discussed in detail.

2.4. Using the framework

We start with a high‐level tour of tested, focusing on how the framework
can be used. To this end, wewill use the following programming exercise
as an example:

Implement a functionremove_all_occurrences that takes
two arguments: a list l of integers and an integer v. The func‐
tion must return a new list containing the same integers as
list l, in the same order, but where all occurrences of integer
v are removed.

A correct Python implementation for this exercise is:

1 def remove_all_occurrences(l, v):
2 return [x for x in l if x != v]

A test suite for this exercise could contain a number of function calls with
different arguments and check their return values against an expected
value. To keep things short, we limit ourselves here to a test suite with a
single function call (listing 2.1).

When evaluating a submission using this test suite, tested will first
translate the test suite into the programming language of the submission.
Conceptually, each function call is converted into a test case:

1 # Python
2 remove_all_occurrences([1, 2, 3, 2], 2) == [1, 3]

1 // JavaScript
2 removeAllOccurrences([1, 2, 3, 2], 2) === [1, 3]

1 -- Haskell
2 (removeAllOccurrences [1, 2, 3, 2] 2) == [1, 3]

tested takes care of the differences between programming languages
(syntax, default representations, and naming conventions). The actual
test code generated by tested is more complex, as it must capture return
values, account for exceptions, etc.

25

Chapter 2. An educational testing framework

1 {
2 "input": {
3 "type": "function",
4 "name": "remove_all_occurrences",
5 "arguments": [
6 {
7 "type": "sequence",
8 "data": [
9 {"data": 1, "type": "integer"},

10 {"data": 2, "type": "integer"},
11 {"data": 3, "type": "integer"},
12 {"data": 2, "type": "integer"}
13]
14 },
15 {"data": 2, "type": "integer"}
16]
17 },
18 "output": {
19 "result": {
20 "type": "sequence",
21 "data": [
22 {"data": 1, "type": "integer"},
23 {"data": 3, "type": "integer"}
24]
25 }
26 }
27 }

Listing2.1.Snippet of a json test suitewith a single test case that calls the function
remove_all_occurrences with two arguments: i) a sequence containing
the four integers 1, 2, 3 and 2, ii) the integer 2. The expected return value is a
list containing the integers 1 and 3.

#1 · 󰄬 Correct Debug

󰄬 remove_all_occurrences([1, 2, 3, 2], 2)

return

[1, 3]

󰅀

Figure 2.1. An example of how the feedback for the test suite from listing 2.1 can
be rendered (in this case, it is rendered by Dodona).

26

2.4. Using the framework

When tested evaluates the correct Python submission from before, it
produces the following Python‐specific feedback:

1 {"command": "start-testcase"}
2 {"description": "remove_all_occurrences([1, 2, 3, 2], 2)"}
3 {"expected": "[1, 3]", "channel": "return"}
4 {"generated": "[1, 3]", "status": "correct"}
5 {"command": "close-testcase"}

A judge platformmay then use this output to display a human‐readable
representation of the feedback (an example of this can be seen in fig‐
ure 2.1). The feedback starts with a description of what has been tested
(a function call in the programming language of the submission, in this
case Python), followed by the expected return value and the actual return
value (in a human‐readable string representation). With the actual return
value, a decision is also given: in this case, the return value is correct.

While the output for correct submissions is important, the output for
wrong submissions is at least as important in the context of an educa‐
tional testing framework. Assume a submission is wrong in that it only
removes the first occurrence of the integer v from the list l (example in
JavaScript):

1 function removeAllOccurrences(l, v) {
2 l.splice(l.indexOf(v), 1);
3 return l;
4 }

When tested evaluates this submission, its feedback reflects that while
the code has been executed successfully, a logical error was found:

1 {"description": "removeAllOccurrences([1, 2, 3, 2], 2)"}
2 {"expected": "[1, 3]", "channel": "return"}
3 {"generated": "[1, 3, 2]", "status": "wrong"}

However, students sometimes do not even get to the point where their
submission is executed successfully. For example, they might submit a
solution containing a syntax error (in Python):

1 {"description": "remove_all_occurrences([1, 2, 2, 3], 2)"}
2 {"message": "Received compiler error:"}
3 {"message": "*** Error compiling..." }
4 {"status": "compilation error"}

Instead of an expected and actual return value, the feedback now con‐
tains the error message printed by the Python compiler. If compilation
fails, the submission will not be executed and testing is stopped.

While Python is
not considered a
compiled
language, it
supports python
-m compileall.

27

Chapter 2. An educational testing framework

Test suite

Python
Java

Haskell
C

Submission

tested

Core

Programming language packages

Java Python

Haskell C

…

Feedback

Figure 2.2. Architectural design of tested, with colours indicating different
programming languages. The framework consists of a set of Python packages
and modules. These can be categorized as the core package and a set of
programming‐language‐specific modules. The input for tested consists of a
test suite, together with a submission in one of the supported programming
languages. The output is the generated feedback.

2.5. Architectural design of the framework

tested is built around the idea that an exercise author writes a single,
unified test suite for the exercise, independent of any programming
language. tested then converts that test suite into the programming
language of the submission on the fly, and takes care of the various as‐
pects of the evaluation process: compiling the submitted code, executing
the submission together with the test code, checking test results, and
generating feedback.

While some parts of the evaluation process are programming‐language‐
specific by necessity, such as generating the test code, a lot of the steps
are not. For example, creating an execution plan or interpreting the test
results and generating the feedback are not specific to any one program‐
ming language. Therefore, the language‐specific aspects are isolated in

28

2.6. Test suites

language modules, as illustrated in figure 2.2.

tested is written in Python and organized into a set of Python modules
and packages. An import package is the core package, which contains
modules that are responsible for all language‐agnostic tasks, such as
scheduling tests. Weprovide an in‐depthdescriptionof the full evaluating
process in section 2.7.2. In most cases, the core is also responsible for
checking the collected test results and generating the feedback. This is
discussed in section 2.7.5.

All aspects that are specific to one programming language are bundled in
one package. These language‐specific modules take care of all language‐
specific tasks, such as compiling submissions, executing submissions,
and handling language‐specific data types, expressions, and statements.
Since the language‐specific code is limited to these modules, this offers
benefits for adding support for new programming languages to tested,
as discussed in section 2.9.

tested takes as input the test suite for a programming exercise and a
possible submission that needs to be evaluated. The format of the test
suite is discussed in‐depth in section 2.6. As a result of its evaluation,
tested outputs a feedback report (section 2.8)

2.6. Test suites

Despite multiple proposals on generic formats for programming exer‐
cises (Edwards et al. 2008; Paiva, Queirós et al. 2020; Queirós and Leal
2011; Verhoeff 2008) or exercise classifications (Le et al. 2013; Simões
and Queirós 2020), there seems to be no generally accepted standard
for test suites of programming exercises. Additionally, none of the pro‐
posed formats meets the requirements that we identified for language‐
agnostic testing frameworks. Existing formats focus mostly on the task
description, whereas we mainly focus on the specification of the test
suite itself.

We therefore feel it is appropriate to introduce a new format for test
suites, specifically developed for tested. It is designed to be machine
and human‐readable and easy to generate. Making it ergonomic to write
by hand was only a secondary goal. While the format is not framework‐
specific, and could thus be adopted by other testing frameworks, this
was not an explicit design goal.

Test suites for tested are written in json, which was chosen because
there is broad support in programming languages. Additionally, it is

A Pythonmodule
is a .py file, while
a Python package
is a folder
containing
modules.

29

Chapter 2. An educational testing framework

human‐editable and readable, especially compared to binary formats.
There is also widespread editor support for json, and technologies such
as json Schema allow for easy validation and even better editor sup‐
port.

Note that tested‐dsl (chapter 3) is the intended way to author exercises,
especially if done manually. The test suites discussed here are a direct
json representation of the internal structure of test suites as used by
tested, and thus much more verbose and not guaranteed to stay stable
in future version of tested.

2.6.1. Structure of a test suite

Returning to the same programming exercise from before, we can ex‐
pand the test suite of listing 2.1 for illustration purposes (resulting in
listing 2.2, rendered in figure 2.3). Instead of directly calling the function
remove_all_occurrences with two arguments, we first create a list
and assign it to a variable in the first test case. In the second test case, we
then call the function remove_all_occurrences, but use the variable
name as the first argument.

While omitted for brevity in the examples, a test suite can organize test
cases in two levels: tabs and contexts. The full hierarchy of the test suite
consists of four levels, from top to bottom:

1. Tabs are the top‐level grouping mechanism. It allows logically
grouping contexts together. While the name of this group suggests
how to display these groups, it is but a suggestion. The example only
has one tab, but a test suite with test cases for multiple functions
might, for example, have one tab per function.

2. Contexts are meant to group dependent test cases together. In our
example, declaring a variable and using that variable must be done
within the same context.

3. Test cases are the basic building blocks of the test suite. The “input”
for a test case is what exactly is being checked. In the example, the
first test case of each context has an assignment, while the second
has a function call.

4. Tests are used for each type of output. tested currently supports
return values, standard output, standard error, exceptions, gen‐
erated files and exit codes. In the example there is one test for
the return value. If a test is not defined (e.g. for standard error in
the example), a sensible default is used. For example, the default
test for standard output and error checks that there is no output,
causing the evaluation to fail if there is unexpected output.

30

2.6. Test suites

1 {
2 "variable": "a_list",
3 "type": "sequence",
4 "expression": {
5 "type": "sequence",
6 "data": [
7 {"data": 1, "type": "integer"},
8 {"data": 2, "type": "integer"},
9 {"data": 3, "type": "integer"},

10 {"data": 2, "type": "integer"}
11]
12 }
13 }, {
14 "input": {
15 "type": "function",
16 "name": "remove_all_occurrences",
17 "arguments": [
18 "a_list",
19 {"data": 2, "type": "integer"}
20]
21 },
22 "output": {
23 "result": {
24 "value": {
25 "type": "sequence",
26 "data": [
27 {"data": 1, "type": "integer"},
28 {"data": 3, "type": "integer"}
29]
30 }
31 }
32 }
33 }

#1 · 󰄬 Correct ②

󰄬

󰄬

a_list = [1, 2, 3, 2] ③
remove_all_occurrences(a_list, 2)

return

[1, 3] ④

󰅀

}③

#2 · 󰄬 Correct ②

󰄬

󰄬

a_list = [0, 1, 1, 2] ③
remove_all_occurrences(a_list, 1)

return

[0, 2] ④

󰅀

}③

Feedback ①

Listing 2.2. (left) A snippet of a json test suite for tested with two state‐
ments: i) declaration of a variable (a_list) that is assigned a sequence
containing four integers 1, 2, 3, and 2 and ii) call of the function
remove_all_occurrences with two arguments: aList and the integer 2.
The expected return value is a list containing the integers 1 and 3.

Figure 2.3. (right) A way to visually render the feedback (as done in Dodona)
resulting from evaluating a submission (in Python) with the test suite from the
left. There are four levels: 1 tabs, 2 contexts, 3 test cases, and 4 the tests.
Here, each context consists of two test cases, the first of which has no explicit
tests, while the second has one explicit test (the expected return value).

31

Chapter 2. An educational testing framework

Table 2.1. Overview of the basic types of tested and their implementation in the
programming languages currently supported by tested. Sometimes, another
type is used instead, based on the value. For example, an integer that is too
large for int in Java will become a long. A dash (‐) is used to indicate that the
programming language does not support this type.

TESTed Python JavaScript Java Kotlin Haskell C Bash C#
integer int Number int Int Int int ‐ Int32
real float Number double Double Double double ‐ Double
boolean bool Boolean boolean Boolean Bool bool ‐ Boolean
text str String String String String char* text string
sequence list Array List List [] ‐ ‐ List
set set Set Set Set ‐ ‐ ‐ Set
map dict Object Map Map ‐ ‐ ‐ Dictionary
nothing None null null null Nothing void ‐ void

This structure mirrors the output generated by tested (section 2.8). For
example, the executed input for each test is also included in the output.
A possible visualization of these levels is given in figure 2.3, which shows
the output rendered in Dodona (Van Petegem, Maertens et al. 2023).

2.6.2. Data serialization

tested uses data serialization to convert between the language‐agnostic
format of the test suite, and the generated test code. Additionally, the
same data serialization is used to convert return values from the sub‐
mission into the language‐agnostic format for checking (as described in
section 2.7.5).

Each literal value is described by an object with two attributes: a value
(e.g. the number 5.3) and a data type (e.g. real). These attributes are
combined into a json object with two fields. The value is encoded using
the closest representation available in json. For example, a number is
represented by a json number, and a string is represented by a json
string. The data type of a literal value is more complex, since tested
targets multiple programming languages that each support their own
collection of data types. tested therefore defines a set of rules to denote
data types and their support in programming languages. This allows
tested to convert types between programming languages.

tested uses two categories of data types. The first category is a limited
set of basic types that are abstract and map to concepts. Currently, the
following basic types are supported:

32

2.6. Test suites

integer An integer. The size of the integer is left undefined.
real A real number. The size and precision of the real is left undefined.
boolean A Boolean value.
text Textual data (e.g. strings). The intention is important here: for

example, an ascii character can be represented as both an integer
or as text.

sequence An ordered sequence of values.
set An unordered collection of unique values.
map A collection of key‐value pairs, where the keys are unique.
nothing A representation of “nothing”, meaning no value.
any Any or unknown data type. This type is not usable in test suites, but

is used to indicated return values of an unknown type.

When a test suite contains a literal value of a basic type, it will be seri‐
alized as an object of an actual data type in the target programming
language. An overview of all basic types and their implementation is
given in table 2.1. For example, a literal value with data type map will
become a Map in Java and a dict in Python.

The second category consists of advanced types, which aremore detailed
or programming language specific. Each advanced type is associatedwith
a basic type, acting as a fallback. For example, int64 is an advanced type
with the basic type integer as a fallback. If a programming language
does not support a particular advanced type, the corresponding basic
type will be used. For example, consider tuples. Many programming
languages do not have direct support for tuples, but exercises using tuples
can still be solved by using the corresponding basic type (sequence).
More concrete, an exercise using the advanced type tuple can be solved
in Java by using a List.

When adding a programming language, it is possible to disable this fall‐
back for certain types. For example, JavaScript has no support for fixed
precision numbers. This prevents tested from evaluating submissions
in JavaScript if fixed precision numbers are used in the test suite. tested
will generate an appropriate error in this case.

Currently supported advanced types are:

int8/16/32/64 8/16/32/64‐bit integers
uint8/16/32/64 8/16/32/64‐bit natural numbers
bigint integers without upper or lower limit
single_precision single precision real number
double_precision double precision real number
double_extended double extended precision real number
fixed_precision fixed precision real number
array a mutable fixed‐size sequence

The names for real
numbers are
borrowed from
IEEE 754.

33

Chapter 2. An educational testing framework

list a mutable variable‐size sequence
tuple an immutable sequence
char a single character
undefined undefined in JavaScript
null null in JavaScript

The advanced data types are also where the language‐specific aspects can
come into play. For example, in addition to the basic type nothing, we
have both undefined and null. In most languages, there is no differ‐
ence between those, but for example, in JavaScript there is. Having both
available as an advanced type allows exercises to use either in JavaScript
exercises, while still being language‐agnostic. Additionally, support‐
ing both types allows for the creating of language‐specific exercises for
JavaScript, where one of the types is required but not

2.6.3. Statements and expressions

We return once more to the test suite from listing 2.1, which evaluates
a function call. It illustrates the need for tested to support a language‐
agnostic description of expressions and statements. Evaluation of an ex‐
pression yields a value, where tested allows describing expected values
as identifiers (referring to a variable that was previously defined), func‐
tion calls or literal values (using the data serialization format described
in the previous section). A statement in tested is either an assignment
(defining a new variable) or an expression (similarly to Python: every
expression is also a statement in its own right).

Note the absence of control structures or operators in the description
of expressions and statements. Our goal is not to create a full‐fledged
abstract programming language. We intentionally limit expressions and
statements to features needed by tested. Creating a universal program‐
ming language that can be converted to all other programming languages
is out of scope.

The use of assignments is illustrated by the expanded test suite in list‐
ing 2.2. We create a list and assign it to the variable a_list. Note that
there are no explicit tests in this first test case. The test case will still
fail if something unexpected happens, e.g. if an exception is thrown or
output is written to standard error. The second test case then calls the
function but uses the variable we defined as the first argument.

34

2.7. Evaluating submissions

2.7. Evaluating submissions

This section discusses the complete process through which a submission
is evaluated. The input for the evaluation process is a test suite and a
submission, which is typically provided by the judge platform in which
tested runs (or can be provided manually if tested is run on the com‐
mand line). Subsequent subsections dive into more detail of individual
parts of the process.

Figure 2.4 is a schematic overview of said evaluation process. Step zero
in the evaluation process is checking if the exercise is solvable in the
programming language of the submission (section 2.7.1). Next, the test
suite is partitioned into compilation and execution units (section 2.7.2).
For each of these units, the relevant test code is generated and compiled
(section 2.7.3), in the programming language of the submission. This
code generation is the bulk of language‐specific code in tested, whose
design and implementation are discussed in section 2.9.

After compilation, each resulting executable contains one or more ex‐
ecution units. These are then all executed, and the side effects (such
as exceptions, standard output, standard error) and results (i.e. return
values) are recorded (section 2.7.4). These results are then checked for
correctness against the test suite (section 2.7.5). This results in the feed‐
back, which is returned by tested.

tested also provides an opportunity for static analysis on the submission.
Currently, all supported programming languages run a linter on the
submission, the results of which are also included in the feedback as
code annotations (section 2.7.6).

2.7.1. Correctness and solvability checks

The first step is doing some correctness checks. For example, the struc‐
ture and contents of the test suite is checked with json Schema. tested
takes a fail‐fast approach (Shore 2004): instead of silently failing when a
test suite contains an error, tested will always abort the evaluation with
an error message. Additionally, all statements and expressions in the
test suite are checked for syntax errors. Special care has been taken to
provide useful error messages to the exercise author.

The next step in the evaluation process is checking if the test suite is
usable for the programming language of the submission. This might not
be the case for a number of reasons, the three main ones being:

Examples include
ESLint, Pylint, and
HLint.

35

Chapter 2. An educational testing framework

In
pu

t

Test suite
C1 C2 … Cn

Configuration

Submission

Linting

Execution planning

Compilation unit 1 … Compilation unit m

Code generation

Test code 1 … Test code m

Compilation 1 Compilation m

Executable 1 Executable m
E1 E2 … Ek

Execution Execution Execution

Result 1 Result 2 Result n

Checking Checking Checking

Feedback

Evaluation results Linter results

Figure 2.4. The process of evaluating a submission in tested. tested is typically
run within a judge platform, which provides the submission, the test suite and
the configuration options. The contexts in the test suite are organized into
compilation units and then execution units. For each compilation unit, the
test code is generated, which is then compiled. The execution units are then
executed, which yields execution results. These are then checked, resulting in
feedback. Separately, a linter performs static analysis on the code quality of
the submission, and the resulting output is also included in the feedback.

36

2.7. Evaluating submissions

• The exercise author has explicitly limited in which programming
languages the exercise may be solved.

• The test suite uses constructs that are not supported by the pro‐
gramming language of the solution. For example, if the test suite
uses object‐oriented programming, the exercisewill not be solvable
in C or Haskell.

• The test suite contains programming‐language‐specific code but
does not provide code for the programming language of the sub‐
mission. For example, if a language‐specific expression is only
provided for Python, the exercise will only be solvable in Python.

2.7.2. Execution planning

The next step is planning the execution of the evaluation: creating an
execution plan. As discussed before, a test suite contains a number of
contexts, which must be independent of each other. tested partitions
these into compilationunits (a set of contexts that are compiled together),
which are in turn partitioned into execution units (a set of contexts
that are executed together). This partitioning is what we consider the
execution plan.

If performance was not a consideration, the simplest execution plan
would be to compile and execute every context individually. After all,
contexts are independent of each other, and separate compilation and
execution would enforce that independence. However, this would be
prohibitively slow: a test suite with fifty contexts would need fifty com‐
pilation steps and fifty execution steps. Creating an execution plan is
thus necessary to improve performance, which is achieved by reducing
the number of compilation units and execution units.

Compilation units

First, tested tries to use a single compilation unit for the whole test
suite. This is achieved by creating a program that accepts an argument
to indicate which execution should be run. In programming languages
without an explicit compilation step, the compilation is no more than
a syntax check. In compiled languages, the compilation is often much
stricter, for example, failing if a non‐existing function is used.

Techniques used to improve performance must be weighed against the
usefulness of the generated feedback. For example, consider an exercise

For example, our
JavaScript
implementation
uses node -c.

37

Chapter 2. An educational testing framework

C1 C2 C3

Tab 1

C4 C5

Tab 2

C6 C7 C8

Tab 3

(a) A schematic representation of a test suite, with three tabs and eight contexts.
The tabs are represented with green boxes, while the contexts (denoted as Cn)
are black boxes.

C1 C2 C3

Tab 1

C4 C5

Tab 2

C6 C7 C8

Tab 3

C1 C2 C3

Tab 1

C4 C5

Tab 2

C6 C7 C8

Tab 3

(b) The two possible partitionings for compilation units (which are denoted by
red boxes). The upper partitioning consists of a single compilation unit for
the whole test suite. This is always tried first. If this fails, each tab becomes
its own compilation unit (the red boxes thus overlap with the green ones).

C1 C2 C3

Tab 1

C4 C5

Tab 2

C6 C7 C8

Tab 3

C1 C2 C3

Tab 1

C4 C5

Tab 2

C6 C7 C8

Tab 3

(c) Two possible partitionings for execution units (denoted by blue boxes), de‐
pending on the partitioning of the compilation units. In the first partitioning
(top), the single compilationunit is split into three executionunits. The second
partitioning (bottom) cannot use the same execution units, as an execution
unit cannot comprise multiple compilation units. The compilation units are
thus further divided into more execution units.

Figure 2.5. Schematic representation of the planning steps.

38

2.7. Evaluating submissions

where students must implement two functions (functions A and B). Stu‐
dents might submit a solution in which they only implement function A.
With a single compilation unit, the generated test code contains calls to
both function A and B. This will this result in a compilation error, as a
call to a non‐existing function is not allowed. This will prevent function
A from being evaluated, even if it was correct.

To prevent this, if the compilation of thewhole test suite fails, tested falls
back to using one compilation unit per tab in the test suite. These two
approaches are illustrated in figure 2.5b. This is why a tab is intended to
be a set of logically related contexts. Continuing with the example from
before, there might be a separate tab A for tests involving function A and
a second tab for tests involving function B. Going more fine‐grained, by
compiling each context individually, does not seem useful. While poten‐
tially providing better feedback, the performance impact is significant.
Compiling at the tab level is a good compromise between fine‐grained
compilation (thus allowing more of the submission to be evaluated) and
performance (the more compilation units, the slower the evaluation will
be).

Execution units

Next, the compilation units from the previous steps are partitioned into
execution units. Each execution unit can be at most one compilation
unit: we cannot execute multiple compilation units together, as each
compilation unit results in a separate executable. However, depending
on the contexts inside a compilation unit, we can (and do) execute a
compilation unit multiple times.

For performance reasons, the ideal partitioning would be a single execu‐
tion unit for the whole test suite. However, this prevents certain types
of exercises from being evaluated correctly. Therefore, a new execution
unit is started based on the type of context: if a context has standard
input, command line arguments, or an explicit check for the exit code, a
new execution unit is started.

2.7.3. Generating test code

Depending on the execution plan, the appropriate code is generated
for the test suite. In concept, this step converts the language‐agnostic
test suite into actual source code, in the programming language of the
test suite (an example of this is shown in section 2.4). For example, a
submission in JavaScript requires generating code in JavaScript.

All programming
languages,
including the
non‐compiled
ones, are handled
the same way.
This allows the
most consistency
between
programming
languages.

39

Chapter 2. An educational testing framework

Code is generated for each compilation unit. The main purpose of the
generated code is to execute the tests specified in the test suite. For this
reason, we also call the generated code the test code. Besides executing
the tests from the test suite, the generated code also contains some
ceremonial code required by tested. Some examples of this ceremonial
code are:

• As a compilation unit can contain multiple execution units, we
generate a wrapper that executes the correct execution unit based
on some parameter (e.g. ./testcode "unit1").

• The generated code includes serialization capabilities (section 2.6.2),
to convert captured values into the internal data format used by
tested.

• The tests are wrapped in code that captures side effects and values,
such as exceptions, return values, etc.

This code generation is the main task of the programming‐language‐
specific modules, discussed in section 2.9.

2.7.4. Executing test code

After the test code has been generated and compiled into executables,
these executables are then executed.

During this execution, special care is taken to ensure that the executions
are independent of each other. All execution takes place in a special
directory called the workdir (from working directory), whose location is
provided to tested via the configuration (section 2.8). For each execution
unit, tested creates a new subdirectory and copies the relevant files into
that subdirectory. The execution then happens in the subdirectory.

Since an execution unit consists of one or more independent contexts,
they are also independent of each other. Another performance benefit of
this independence is that this allows parallel execution of the different
execution units. Of course, this is only relevant if there are multiple exe‐
cution units, but this is the case with most exercises in our experience.

Another benefit is better feedback. Since tested copies all files into
a dedicated subdirectory for each execution unit, we reduce chances
of executions interfering with each other. For example, consider an
erroneous submission for an exercise where data is provided in a file. If
the submission overwrites or changes the file by accident, subsequent
executions would use the modified file.

40

2.7. Evaluating submissions

The astute reader might wonder how parallel execution is implemented,
since tested is written in Python, a language whose default implementa‐
tion (CPython) has an infamous global interpreter lock (gil). This means
that at any one time, only one thread can execute Python code. However,
tested executes the test code in a separate process. This means the
global interpreter lock does not apply: during execution of the test code,
most of the time is spent waiting on results from the subprocess that is
actually doing the execution. Waiting on input/output results is one area
where the global interpreter lock is released, even in current Python
versions.

2.7.5. Checking test results

The code responsible for checking whether test results (return values,
standard output, etc.) are correct is called an oracle (Howden 1978).
tested supports three types of oracles, which can be divided into two
categories: language‐agnostic oracles that work for all programming lan‐
guages and language‐specific oracles, where eachprogramming language
requires a separate implementation of the oracle. Language‐agnostic or‐
acles are further divided into built‐in oracles and programmed oracles.

The built‐in oracles are provided by and included in tested. These are
rather simple, but should nevertheless suffice for most exercises. We
envision that as a natural evolution of using tested more broadly, other
generic comparison methods might present themselves for inclusion in
the framework. Currently, the following oracles are included:

Text oracle This oracle compares two strings and is used for standard
output and standard error. The oracle has some options, for ex‐
ample, to ignore trailing whitespace, to attempt to parse the text
as floating point numbers or case sensitivity. The expected value
can be provided either as a string, or as a file, in which case the
contents of said file are used as the string.

File oracle This allows comparison between two files, either comparing
the whole file, or comparing the file line‐by‐line. When comparing
line‐by‐line, the text oracle is used, so the same options can be
provided.

Return value oracle This oracle compares two values (using the serializa‐
tion from section 2.6.2). The oracle uses the basic and advanced
types of tested to compare the data types in addition to the values.

Work is ongoing to
remove the gil
from CPython, as
PEP 703.

41

Chapter 2. An educational testing framework

Exception oracle This allows checking exceptions. By default, only the
message of the exception is checked, as the type of an exception is
programming language dependent. However, the oracle does have
an option to provide the expected type for the different program‐
ming languages. Do note that checking the type happens with a
string‐based check, meaning that if a student implements a custom
exception with the same name, it will pass the check.

There are anumber of scenarioswhere thebuilt‐in oracles arenot enough
to properly check an exercise. One such example is an exercise where
dynamic data is used, for example a return value that depends on the cur‐
rent date. Another example is a random or otherwise non‐deterministic
return value, where the value must satisfy some conditions. Finally,
sometimes the exercise is static, but it is better to provide some exercise‐
specific feedback. For example, if the exercise is to generate an svg,
it would be better to include a rendered version of the svg in the feed‐
back.

For these scenarios, a programmed oracle can be used. Such an oracle is,
in essence, an extension of the built‐in oracles: instead of using a built‐in
oracle, tested will call the exercise‐provided oracle. Exercise authors
must provide the oracle in the form of a function (the check function)
implemented in Python. This oracle is also language‐agnostic: the same
check function will be used for all programming languages.

Lastly, there are the language‐specific oracles, which are provided as
an escape hatch. These oracles are run together with the generated test
code and skip the data serialization pipeline. They are therefore not
subject to the serialization limits of tested. An example of a scenario
where this could be useful is an exercise where a function returns an
instance of a custom class or any built‐in datatype that does not map to a
tested datatype.

The big downside to using these oracles is that they are programming
language specific. The oracle thus has to be implemented in each pro‐
gramming language the exercise supports. These oracles are therefore
only provided as an escape route for language‐specific expressions, state‐
ments, and data types. We discourage their usage as much as possible.

2.7.6. Static analysis of the submission

tested also provides a way to perform exercise‐independent static ana‐
lysis on the submission as part of the evaluation process. The use of
linters is widespread in the software engineering world and can also

Earlier versions of
tested allowed
implementing
programmed
oracles in any of
the supported
programming
languages.
Because of serious
performance
penalties, this is
no longer allowed.

42

2.8. Integration with and influences of Dodona

benefit students by pointing to common errors and familiarize students
with the programming style of the language they are working in (AlO‐
mar et al. 2023). Currently, all supported languages (except C#, where
the compiler acts a linter) in tested use an external linter to generate
additional feedback (table 2.2).

Table 2.2. Overview of the linters used by tested. For C#, the compiler already
provides linter‐style warnings and feedback.

Programming language Linter
Bash Shellcheck
C Cppcheck
C# (compiler)
Haskell HLint
Java Checkstyle
JavaScript ESLint
Kotlin Ktlint
Python Pylint

2.8. Integration with and influences of Dodona

Dodona (Van Petegem, Maertens et al. 2023) is an online platform for
solving and submitting programming exercises. An introduction and
overview of the platform is given in section 1.2. Relevant here is the
distinction between a judge platform and testing framework (section 2.2):
Dodona is the judge platform in which different testing frameworks (the
judges in Dodona terminology) can be run.

While tested is available as a standalone tool, it was primarily developed
with Dodona in mind. Therefore, some design decisions made by the
Dodona platform still apply to tested as well. In this section, we briefly
discuss the relevant aspects ofDodona that have an impact on tested. We
also look at Dodonas̓ feedback format, which is also used by tested.

2.8.1. Architecture of the Dodona platform

Dodona enforces a complete separation of the platform code and the test‐
ing framework. Communication between the platform and the testing
frameworks is done via a well‐defined interface, consisting of two parts:
the input for testing frameworks and the feedback generated by testing

43

Chapter 2. An educational testing framework

1 {
2 // The programming language of the submission.
3 "programming_language": "python",
4 // The natural language used when submitting.
5 "natural_language": "en",
6 // Path to the resource folder of the exercise.
7 "resources": "/exercise/simple-example/",
8 // Path to the submission's source code.
9 "source": "/exercise/simple-example/correct.py",

10 // Path to the judge.
11 "judge": "/tested/",
12 // Path the a workdir, where execution should happen.
13 "workdir": "/temp/workdir/",
14 // Memory limit, in bytes.
15 "memory_limit": 536870912,
16 // Time limit, in seconds.
17 "time_limit": 60,
18 // Name of the test suite.
19 "suite": "suite.yaml",
20 // \textsc{test}ed: additional options...
21 "linter": true
22 }

Listing 2.3. Annotated example of the input provided to testing frameworks by
Dodona. This is also the input expected by tested.

frameworks. Both are discussed in the next two sections. Evaluating sub‐
missions is done using Docker, as testing frameworks run student code.
They must be immune to bad code, e.g. a submission with an infinite
loop should not bring down the platform. Neither should malevolent
submissions: a fork bomb should similarly have no impact on the plat‐
form.

When code is submitted, the platform will create a Docker container us‐
ing the testing framework s̓ associated Docker image. Then, relevant files
for the exercise and the submission are mounted into the container s̓ file
system. Finally, the container is run, which will start the testing frame‐
work inside the container with relevant options (section 2.8.2). Dodona
then reads the feedback from the standard output of the container (sec‐
tion 2.8.3). This feedback is then saved into the database and shown to
the user who submitted the code.

2.8.2. Dodona-provided input for testing frameworks

When Dodona starts a testing framework, it provides a json object
on standard input. This configuration object contains all information

44

2.8. Integration with and influences of Dodona

needed by the testing framework to evaluate a submission. An annotated
example is provided in listing 2.3.

Most of the options are pretty straightforward. Of the generic options,
the memory and time limit are informational: they are provided so that
a testing framework can make an effort to limit submissions. However,
Dodona will enforce these limits if the limits are exceeded. A common
use‐case is to provide better or more detailed feedback about the issue
(since Dodona, by design, can only indicate a global memory or time
limit exceeded error).

Additional testing‐framework‐specific options are also added to this ob‐
ject. For example, with tested, the name of the test suite is often such
an option. Other usable options for tested1 are:

parallel If contexts should be executed in parallel or not (default false).
See section 2.7.4 for more information on this option.

allow_fallback Determines if unit compilation should be attempted
if the global compilation fails (default true). See section 2.7.2 for
more information about this option.

linter Enables or disables linting of the submissions (default true).

language An object mapping programming languages to objects con‐
taining language‐specific options. As an example use‐case of this
option, some languages allow customizing the linter configura‐
tion.2

compiler_optimizations If compiler optimizations should be en‐
abled if available or not (default false). By enabling this option,
compile speed is sacrificed for better execution speed of the submis‐
sion. This option can be useful for exercises where the submission
is expected to be computationally heavy.

2.8.3. The Dodona feedback format

Dodona supports two output formats: a full and a partial output format.
testeduses thepartial output format, sowewill only discuss that format.

The feedback has a similar structure as the test suite (section 2.6.1).
The format is named partial since it is a streaming json format. This

1These are also described in our documentation at https://docs.dodona.be/
en/references/tested/exercise-config/

2https://docs.dodona.be/en/references/tested/exercise-config/
#linters

45

https://docs.dodona.be/en/references/tested/exercise-config/
https://docs.dodona.be/en/references/tested/exercise-config/
https://docs.dodona.be/en/references/tested/exercise-config/#linters
https://docs.dodona.be/en/references/tested/exercise-config/#linters

Chapter 2. An educational testing framework

1 {"command": "start-judgement"}
2 {"command": "start-tab", "title": "Feedback"}
3 {"command": "start-context"}
4 {"command": "start-testcase", "description": "a_list = [1, 2, 3, 2]"}
5 {"command": "close-testcase"}
6 {"command": "start-testcase", "remove_all_occurrences(a_list, 2)"}
7 {"command": "start-test", "expected": "[1, 3]", "channel": "return"}
8 {"command": "close-test", "generated": "[1, 3]", "status": "correct"}
9 {"command": "close-testcase"}

10 {"command": "close-context"}
11 {"command": "start-context"}
12 {"command": "start-testcase", "description": "a_list = [0, 1, 1, 2]"}
13 {"command": "close-testcase"}
14 {"command": "start-testcase", "remove_all_occurrences(a_list, 1)"}
15 {"command": "start-test", "expected": "[0, 2]", "channel": "return"}
16 {"command": "close-test", "generated": "[0, 2]", "status": "correct"}
17 {"command": "close-testcase"}
18 {"command": "close-context"}
19 {"command": "close-tab"}
20 {"command": "close-judgement"}

Listing 2.4. Example of the output generated by tested, which is rendered in
figure 2.3. As before, each context consists of two test cases, the first of which
has no explicit tests, while the second has one test (the expected return value).

means that the output is a stream of json objects, instead of one big json
object.

tested uses newline‐delimited json. Two equivalent specifications exist
for this format: ndjson (Newline‐Delimited json)3 and json Lines4. The
format itself is simple: json objects are separated by a newline, and each
line is a valid json object.

Listing 2.4 contains the output from tested that resulted in the feedback
as shown in figure 2.3. The structure of the feedback is indicated by
commands, with start commands to begin a new level in the hierarchy
and close commands to finish a level.

The Dodona feedback format is a simple, yet flexible format. It has been
usedby a variety of testing frameworks for general purpose programming
languages (like tested, but also dedicated frameworks for JavaScript,
Bash, Python, C, C#, Prolog, Haskell, R, Scheme, and assembly). It has
also been used successfully for more niche testing frameworks (such as
html/css, sql, and Turtle).

This illustrates that tested is neither limited by this choice of output

3https://ndjson.org/
4https://jsonlines.org/

46

https://ndjson.org/
https://jsonlines.org/

2.9. Programming language support

format, nor would it be challenging to support this format in other plat‐
forms.

2.9. Programming language support

The parts of the evaluation process that are programming‐language‐
specific are implemented using a module system. To make adding new
programming languages easy, tested enforces a strict separation of
concerns with regard to language‐specific tasks. All language‐specific
actions and tasks must go through a single well‐defined interface. This
interface is implemented using Pythons̓ object‐oriented capabilities by
defining an abstract base class called Language.

This Language class has a set of abstract methods, for which an imple‐
mentation is necessary, and a set of optional methods, which may be
overridden but are not required. The Language class is the interface
between the core modules of tested and the language‐specific modules.
No other modules have language‐specific code. The main task when
adding support for a new programming language is to implement this
abstract base class. Some other smaller tasks are registering the language
in tested and adding support in the test suite for this new programming
language.

The remainder of this section describes the different methods that must
or can be implemented. We always begin by providing the method sig‐
nature, followed by a discussion of the method. Most of this information
is also available in the class itself as documentation in the code, which is
also the most up‐to‐date version.5

2.9.1. Compilation

1 def compilation(self, files: list[str]) -> CallbackResult:

The compilation step of the evaluation process is responsible for com‐
piling the generated test code (with the compilation units) into execut‐
able (section 2.7.2). This method implements this step and must re‐
turn the command that tested will use to compile the compilation
unit. The return type CallbackResult is an alias for tuple[Command,
list[str] | FileFilter].

5https://github.com/dodona-edu/universal-judge/blob/master/tested/
languages/config.py

47

https://github.com/dodona-edu/universal-judge/blob/master/tested/languages/config.py
https://github.com/dodona-edu/universal-judge/blob/master/tested/languages/config.py

Chapter 2. An educational testing framework

The only argument (files) of this method is a list of files that the com‐
pilation unit comprises of. By convention, the file with the program entry
point (which is often a main function) is last in the list.

The first value of the returned tuple is the compilation command. This
command is a list of strings, which will be executed with the Python
subprocess package. The second part of the return value must be a list
of generated files, in which by the same convention the last file is the
executable file. All files in this list will bemade available to the execution
command in the next step of the evaluation process. Alternatively, a file
filter can be returned, which allows dynamic filtering of the resulting
files after compilation.

As an example, consider the C language. When compiling C, we are only
interested in the resulting binary, which also has a predictable name.
The list of generated files can thus contain a single string: the name of
the generated binary.

However, it is not always possible to predict the list of generated files, nor
is it possible to predict their names. For example, in Java, compiling a
file will result in one or more class files, depending on the content of the
Java file (a nested class will result in more class files). In that case, the
file filter can be used, which will be called for each file in the compilation
directory after compilation has completed.

As a concrete example, this is how the method is called and what its
return value is for C (onWindows):

1 >>> compilation(['submission.c', 'evaluation_result.c',
'context_0_0.c', 'selector.c'])↪→

2 (
3 ['gcc', '-std=c11', '-Wall', 'evaluation_result.c', 'values.c',

'selector.c',↪→

4 '-o', 'selector.exe'], ['selector.exe']
5)

The compilation method is optional: languages that do not require com‐
pilation can use the default implementation. However, this step is ideal
to at least perform a syntax check, and we recommend that all languages
do this, if at all possible. Even non‐compiled languages often have a
syntax checker that is faster than executing the program. For example,
both Python and JavaScript are not considered compiled languages, but
both implement a syntax check in tested.

48

2.9. Programming language support

2.9.2. Execution

One of the most important methods is the method responsible for creat‐
ing the execution command. This method is called after the compilation
step, if that step was successful.

1 def execution(self, cwd: Path, file: str, arguments: list[str]) ->
Command:↪→

This method must return one value: the command to execute. As with
the compilation method, the returned command will be executed by
passing it to Pythons̓ subprocess package.

The returned command must execute the file from the file argument.
The argument arguments contains a list of command line arguments
that must be passed to the program. The cwd arguments is the directory
in which the execution will take place. This can be useful for languages
that compile to a binary executable. Since this executable is not on the
path, it is safer to return an absolute path to it.

Continuing with the same example in C, a call to this method would look
like this:

1 >>> execution('/test/path', 'executable.exe', ['arg1', 'arg2'])
2 ['/test/path/executable.exe', 'arg1', 'arg2']

All files that were included in the return value of the compilationmethod
will also be available in the execution directory, in addition to other
dependencies that we discuss next.

2.9.3. Dependencies and other files

In the commands from the two previous sections, the methods receive a
list of files that are potential dependencies for compilation or execution.
There are also some methods that optionally can influence which files
are considered dependencies.

1 def initial_dependencies(self) -> list[str]:

Returns a list of additional dependencies that will be included in the com‐
pilation and execution. The returned strings are paths to files, relative to
the implementation folder of the language module in tested.

For example,most languages include a separate file to deal with encoding
return values into the tested data format.

1 def filter_dependencies(self, files: list[Path], context_name: str)
-> list[Path]:↪→

49

Chapter 2. An educational testing framework

Used to filter the results of the compilation step to the files needed for one
test case. In most cases, a single compilation step is used for all test case.
However, not all languages need all resulting files for each execution. By
default, the name of the test case is used to filter the files.

1 def find_main_file(self, files: list[Path], name: str) -> Path |
Status↪→

This optional method finds the main file (meaning the executable file
or the file with the main method) in a list of dependencies. The method
should either return the path to the main file, or return an error status if
the file could not be found.

1 def modify_solution(self, solution: Path):

A callback that allowsmodifying the submission. The submission should
be modified in place. The callback is called after linting, but before
compilation or execution.

An example of this use case is JavaScript. To support both CommonJS
and ES6 modules, we analyse the code and add exports for all functions,
variables, and classes in the submission. Similarly, the main function in
C programs is renamed to prevent conflicts with the main function in
the generated tested code.

2.9.4. Configuration and conventions

There are a number of simple methods that deal with the different con‐
ventions used by the programming language.

1 def get_string_quote(self) -> str:

Returns the character used to quote strings. By default, this is a double
quotation mark (").

1 def naming_conventions(self) -> dict[Conventionable,
NamingConventions]:↪→

Returns the naming conventions used by the programming language.
It must return a dictionary, which maps different aspects to a naming
convention.

The “conventionable” aspects are namespaces, function names, identifi‐
ers, properties, classes, and global identifiers. Most are self‐explanatory,
except for namespace, whose meaning depends on the programming
language. In some languages this is used as the name for packages or
modules, but in Bash, for example, it is used as the name of the script.

50

2.9. Programming language support

Table 2.3 contains an overview of the available naming conventions in
tested.

Table 2.3. Available naming conventions in tested.

Naming convention Example
Camel case thisIsAnExample
Snake case this_is_an_example
Camel snake case this_Is_An_Example
Cobol case THIS-IS-AN-EXAMPLE
Dash case this-is-an-example
Donor case this|is|an|example
Flat case thisisanexample
Macro case THIS_IS_AN_EXAMPLE
Pascal case ThisIsAnExample
Pascal snake case This_Is_An_Example
Train case This-Is-An-Example
Upper (flat) case THISISANEXAMPLE

1 def file_extension(self) -> str:

Return the main file extension for the programming language. For a
language withmultiple extensions, this should return the extension used
for executable (main) files. For example, in C this returns c and not h.

1 def is_source_file(self, file: Path) -> bool:

An optional method that determines if a file could be a source file for the
programming language. By default, this will check the extension of the
file against the extension provided by the file_extensionmethod.

1 def submission_file(self) -> str:

Returns the name of the submission file. By default, this calls the helper
function submission_name and adds the file extension to it.

2.9.5. Type support

The system for data types used by tested is explained in section 2.6.2.
The actual implementation of this system happens with the following
methods.

1 def supported_constructs(self) -> set[Construct]:

In practice, most
languages use
camel case and
snake case (and
their uppercase
variants).

51

Chapter 2. An educational testing framework

This method should return a set of the constructs that are supported by
this language. This is one of the mechanisms used in section 2.7.1 to
check if a submissions in a certain programming language are possible
for a given test suite.

The currently supported constructs are:

Objects Object‐oriented constructs, such as classes.
Exceptions Exception support.
Function calls Function call support.
Assignments The result of an expression can be assigned to a variable.
Heterogeneous collections Data structures whose elements can be of dif‐

ferent data types.
Default parameters Parameters in a function with a default value.
Named parameters Parameters in a function can be passed by name

rather than (or in addition to) by position.
Global variables Variables or constants defined at a top‐level.

Note that the constructs can sometimes be interpreted in a loose sense.
For example, the Haskell implementation indicates that assignments
are supported, even if this is not strictly true. x = 5 + 5 defines a new
function x with the body 5 + 5. However, for practical purposes, this
can fulfil the same role as an assignment in tested.

1 def collection_restrictions(self) -> dict[AllTypes,
set[ExpressionTypes]]:↪→

This optional method allows restricting which data types are allowed
in collection types. Currently, restrictions for map keys and sets are
supported. For example, in Python, a list is not hashable, meaning it
cannot be used as the key in a dictionary, nor can it be an element of a
set.

1 def datatype_support(self) -> dict[AllTypes, TypeSupport]:

This function is used to indicate the data type support for the language.
The return value is a mapping of the types to their support. The default
is unsupported: only supported types must be present.

For example, in Bash, the implementation of this function looks like:

1 def datatype_support(self) -> dict[AllTypes, TypeSupport]:
2 return {
3 AdvancedStringTypes.CHAR: TypeSupport.REDUCED,
4 BasicStringTypes.TEXT: TypeSupport.SUPPORTED,
5 }

Strings are supported (and are the only type supported by tested). Char‐
acters are supported, but in reduced form. This means that strings will
be used for characters.

52

2.9. Programming language support

2.9.6. Stacktraces and compiler outputs

1 def cleanup_stacktrace(self, stacktrace: str) -> str:

In most cases, stacktraces from runtime errors, compiler errors, or com‐
piler warnings contain references to the generated tested code. How‐
ever, these lines are not relevant nor useful to students. Therefore, this
method provides a way to clean up stacktraces.

1 def compiler_output(self, stdout: str, stderr: str) ->
tuple[list[Message], list[AnnotateCode], str, str]↪→

Another example of a use‐case is adding links in the feedback to the
relevant lines in the submission. Dodona also supports this feature, so
users there can click on a stacktrace and go to the relevant lines, similar
to most development environments. The returned tuple contains a list
of messages, a list of code annotations, and the clean version of the
compiler output.

2.9.7. Code generation

tested works by generating code (section 2.7.3). The following methods
are called on the language module to generate code for various language
constructs. In the implementation for most languages, the code genera‐
tion is implemented in a separate module, and these methods just call
that module.

1 def generate_statement(self, statement: Statement) -> str

Generate code for a statement (since a statement is also an expression,
this also covers values).

1 def generate_execution_unit(self, execution_unit:
"PreparedExecutionUnit") -> str:↪→

Generate code for an execution unit. It is expected that the implementa‐
tion of this method uses the other methods for generating code. For ex‐
ample, an execution unit probably needs to generate code for a statement
somewhere, which would be done using generate_statement.

When generating the code for an execution unit, a few things must be
taken into account (figure 2.6):

• tested expects two sentinel values to be present in all outputs
(standard output, standard error, return values, exceptions): a
secret value outputted between the outputs for test cases and an‐
other secret value between the outputs for contexts.

53

Chapter 2. An educational testing framework

• Return values and exceptions must be serialized in json, using the
internal data form from tested.

• The generated code should be robust against unexpected output,
including exceptions.

2.10. Evaluation of the TESTed framework

To validate whether tested meets the requirements put forward in sec‐
tion 2.3, we report on its use in educational practice. We conducted
three quasi‐experiments (table 2.4) where we asked students to solve a
set of programming exercises and automatically reviewed their submis‐
sions with tested in Dodona. Each experiment specifically focuses on a
particular aspect of tested we want to evaluate.

Table 2.4. A summary of the three quasi‐experiments by their data.

Experiment Languages Users Exercises Submissions
Language
independence 6 38 3 468

Overhead for
designers 6 325 50 5465

Educational
practice 1 95 5 6696

2.10.1. Programming language independence

The goal of a programming‐language‐agnostic testing framework is to
allow unit testing with a programming‐language‐agnostic test suite. We
therefore wanted to verify that this goal can be achieved with a testing
framework that implements the formulated requirements. We asked
higher education students to solve a set of three programming exercises
in one or more programming languages supported by tested at that
time (C, Haskell, Java, JavaScript, Kotlin, Python). One exercise required
solutions to read data from standard output and generate results on
standard output, i.e. the classic acm‐icpc style programming challenges.
The other exercises required implementing one or more functions that
are called many times from the test suite with different arguments to
cover different corner cases.

54

2.10. Evaluation of the tested framework

C1 C2 C3

Unit 1

C4 C5

Unit 2

C6 C7 C8

Unit 3

Executable

def main()

match argument:
case "1":

exec1()
case "2":

exec2()
case "3":

exec3()

def exec1()

print_ctx_secret()
context1()
print_ctx_secret()
context2()
print_ctx_secret()
context3()

def exec2()

print_ctx_secret()
context4()

def exec3()

print_ctx_secret()
context5()
print_ctx_secret()
context6()
print_ctx_secret()
context7()
print_ctx_secret()
context8()

Code generation and compilation

output1.txt

context_separator (C1)
testcase_separator
result1
testcase_separator
result2

output2.txt

context_separator (C1)
testcase_separator
result1
context_separator (C2)
testcase_separator
result1
...

output3.txt

...
context_separator (C8)
testcase_separator
result1

def context1()

print_tc_secret()
testcase1()
print_tc_secret()
testcase2()
print_tc_secret()
testcase3()
...

def context2()

print_tc_secret()
testcase1()
print_tc_secret()
testcase2()

… def context8()

print_tc_secret()
testcase1();

Execution

Figure 2.6.Overview of code generation in tested. This figure covers the optimal
scenario, where a single compilation unit for the whole test suite is used
(figure 2.5b). Its main function has one job: selecting the correct function for
the relevant execution unit. This is illustrated here with a case. Each of these
execution functions will write a secret (to separate the outputs) to all outputs
(return values, standard output, standard error, exceptions) and will then call
the function for the contexts in that execution unit. This function for the
context does something similar: it writes the context secret to the outputs and
execute the test cases. The final results for each output are a set of captured
values separated by the context and test case separators.

55

Chapter 2. An educational testing framework

We challenged students to solve the exercises in as many programming
languages as they possibly could, in order to broadly cover all program‐
ming languages supported by tested. We also added support for new
programming languages to tested while students were solving the exer‐
cises, in order to verify that test suites were robust against these exten‐
sions. tested automatically evaluated submissions in different program‐
ming languages for all three exercises immediately upon submission.
Afterwards we manually verified that valid feedback was provided for all
supported languages.

In total, 38 users (including several of the authors of Strijbol, VanPetegem
et al. (2023)) submitted 468 solutions for the three exercises. Upon evalu‐
ation by tested based on the test suites for the exercises, 158 submissions
passed all test cases and 310 submissions did not compile or failed at least
one test case. 44 (28%) of the correct submissions were implemented
in Python, 28 (17%) in Haskell, 27 (17%) in JavaScript, 22 (14%) in C, 19
(12%) in Java and 17 (11%) in Kotlin.

As expected, tested indicated that it could not evaluate submissions in C
for one of the three exercises. The test suite for this exercise specified that
some function calls needed to return an array and this is not supported by
the configuration of the C programming language in tested. Support for
arrays in C is omitted intentionally, as C has no first‐class array support.
For example, to pass an array as a function parameter in C, it is common
to pass a pointer and the length of the array. Similarly, returning a
pointer from a function is not enough; the length also needs to be passed
somehow. One solution is to return a struct containing both the pointer
to the array and the length, but this is not standard in C.

We consider the experiment successful. Apart from the arrays in C, no
other limitations of tested were encountered. All submissions that were
considered correct upon manual inspection also passed all test cases
upon evaluation by tested, irrespective of the programming language.
All submissions that were considered wrong upon manual inspection
failed to pass the evaluation by tested either at compile time or when
executing the test cases. Additionally, we received no complaints by
students of programming style issues. For example, tested correctly
converted between camel case and snake case. Another example is
JavaScript, where tested supports both synchronous and asynchronous
functions.

56

2.10. Evaluation of the tested framework

2.10.2. Overhead for exercise authors

The main goal of the second experiment was to identify any overhead
that could possibly be imposed on exercise authors while producing
test suites for tested, compared to authoring test suites for a specific
programming language. A secondary goal was to identify possible limit‐
ations on the kind of exercises that tested could evaluate automatically
or any shortcomings in the feedback it provides. For these purposes we
designed test suites for all programming challenges of the 2020 edition
of the Advent of Code, an annual programming contest run by EricWastl
from December 1 to December 25.6

The Advent of Code platform does not directly review source code that
solves the programming challenges, but provides users with a single
input data set and accepts a single textual result (usually a number or a
short text) that is compared against the expected result by exact string
matching. We have designed more elaborate test suites for all Advent
of Code challenges that allow for more fine‐grained testing of imple‐
mented solutions as is common practice in software engineering and in
educational practice.

Following a divide and conquer strategy, most challenges were broken
down into multiple functions or methods that compute intermediate res‐
ults that can be tested explicitly. Each function and method was tested
separately using multiple input data sets (50 test cases by default) that
were either provided as arguments when calling the functions/methods
or as a text file containing bulk data. The strongly typed features of
tested were fully exploited in passing arguments (including file loca‐
tions) and specifying expected return values. As a result, users got richer
and more granular feedback from tested compared to the binary feed‐
back (correct/wrong) from the Advent of Code platform, as test suites
were also checking intermediate computations in addition to final res‐
ults, and were testing on multiple input data sets with varying sizes and
covering different corner cases.

In total, 325users (including several of the authors of Strijbol,VanPetegem
et al. (2023)) submitted 5465 solutions for the 50 challenges in the 2020
edition of the Advent of Code. Upon automatic review by tested, 1844
submissions passed all test cases and 3621 submissions did not compile
or failed at least one test case. 1507 (81%) of the correct submissions
were implemented in Python, 141 (8%) in Java, 78 (4%) in JavaScript,
57 (3%) in C, 41 (2%) in Haskell, and 20 (1%) in Kotlin. Compared to
the previous experiment, submissions for the Advent of Code challenges

6https://adventofcode.com/

57

https://adventofcode.com/

Chapter 2. An educational testing framework

are much more skewed towards Python. Most users participating in
this experiment were students that were driven by solving the Advent of
Code challenges on a daily basis using the programming language they
were most familiar with or they wanted to practice more. Solving the
challenges using multiple languages, as we did for the first experiment,
was not explicitly promoted in this case.

In light of the goals put forward for this experiment, we again evalu‐
ated the experiment as successful. On a daily basis from December 1
to December 25, we could publish the two Advent of Code challenges
on our learning platform with support for automatic review by tested
within two hours after they had been published on the Advent of Code
platform. This required a single test suite designer to implement a solu‐
tion for an Advent of Code challenge, design an interface (functions or
methods) for solving the challenge, generate 50 test cases that call each
function/methodwith a diverse set of arguments (using the implemented
solution to compute the expected return value). In addition, the same test
suite designer also translated the description of the challenge in Dutch
because our learning platform supports programming challenges both
in Dutch and English. Meanwhile, some of the other authors (Strijbol,
Van Petegem et al. 2023) were validating the test suite design and the
feedback provided by tested using their own implementations of the
Advent of Code challenge in a variation of programming languages.

We found that generating generic test suites for tested was not more
time‐consuming than generating test suites for the testing framework of
a specific programming language. We have been able to design test suites
for all Advent of Code challenges without discovering any limitations
or needs to find workarounds. All test suites rely only on the built‐in
oracles of tested, so for the Advent of Code challenges we never had to
rely on the programmed or language‐specific oracles. The latter under‐
scores thatmore advanced or language‐specific techniques for automatic
evaluations are indeed only needed in specific cases.

We could no longer verify the feedback generated by tested for all sub‐
mitted solutions, but we did not encounter any invalid feedback when
inspecting a sample of the submissions while running the challenges.
Users could contact the authors (Strijbol,VanPetegemet al. 2023) through
the Q&Amodule of Dodona and we explicitly asked them to report any
bugs or shortcomings observed while submitting their solutions and re‐
ceiving feedback, but all responses (n = 30 during the 2020 edition) were
questions about how to solve some of the Advent of Code challenges
or about suggestions on how to improve (the performance) of submit‐
ted solutions. No responses hinted at improvements we could make on
tested.

58

2.10. Evaluation of the tested framework

This experiment also revealed a first area for future work. We wanted
to explore how the process of designing programming exercises with
automated feedback provided by tested can be made more ergonomic.
While test suites expressed in json can be easily computer generated,
their format is less suitable for reading and writing by humans. At the
time of writing the publication of this chapter, we were already looking
into designing a domain‐specific language to describe test suites for
programming exercises.

Our idea then was that tested would convert the domain‐specific lan‐
guage into json as a preprocessing step, while keeping json as the
base format for computer generated test suites. However, as detailed in
chapter 3, we later used the domain‐specific language directly, without
conversion step. We also investigated the option to support multiple
domain‐specific languages for different types of programming exercises,
for example a dsl for stdin/stdout exercises and another domain‐specific
language for test suites built around function calls. However, it became
clear the supporting both scenarios in the samedomain‐specific language
was feasible and a better approach. Also of interest was supporting pre‐
vious attempts at standardizing descriptions of programming exercises
such as yapexil (Paiva, Queirós et al. 2020) and peml (Mishra and Ed‐
wards 2023), and extending BabelO (Queirós and Leal 2013) with support
for tested.

Designing a programming exercise that can be solved in multiple pro‐
gramming languagesnot only requires aprogramming‐language‐agnostic
testing framework, but also a task description that adapts itself to selec‐
ted programming languages. Particular differences between languages
that need to be taken into account in expressing task descriptions are
naming conventions (e.g. camel case or snake case), names for data
types (e.g. lists in Python or arrays in Java), representation of literals (e.g.
single quotes or double quotes as string delimiters) and grammar for
expressions and statements (e.g. in sample code snippets).

We also investigated the use of a templating system to describe task de‐
scriptions in a programming‐language‐agnostic way, in combination
with tested as an engine to replace generic placeholders with language
specific descriptions on the fly. In this context we looked into extending
the restricted support for expressions and statements that tested uses
to denote literals, variables, assignments, function calls and object cre‐
ation in a generic way into a more expressive abstract language that, for
example, also supports mathematical and logical operators. This was
implemented with the dsl as well, as discussed in section 3.2.4.

59

Chapter 2. An educational testing framework

2.10.3. TESTed in educational practice

Where previous experiments were primarily conducted with higher edu‐
cation students, the experiments themselves were run outside regular
educational practice. Therefore, we ran a third experiment where we re‐
placed the automatic evaluation using a testing framework for JavaScript
with evaluations provided by tested for some of the exercises halfway
through the semester of a course with higher education students. Stu‐
dents were not informed beforehand that the automated feedback would
be provided by another testing framework. The existing test suite for the
JavaScript testing frameworkwas replacedwith a test suite for tested, us‐
ing exactly the same test cases, so that we could immediately switch back
to the JavaScript testing framework in case any blocking issues would
occur. We configured tested to evaluate all submissions as JavaScript
code, so students could not solve exercises in any other programming
language than JavaScript.

In total, 95 students submitted 6696 JavaScript solutions for five program‐
ming exercises. Upon automatic review by tested, 501 submissions
passed all test cases and 6195 submissions did not compile or failed at
least one test case. Note that Dodona (Van Petegem, Maertens et al. 2023)
does not impose any restrictions on the number of submissions students
can make for the programming exercises.

The students did not spontaneously send any signals that they noticed dif‐
ferences between the feedback they received from the JavaScript frame‐
work or tested. After we informed the students about the change we
made in the background of Dodona, they confirmed that the feedback
provided by testedwas on parwith feedback they received before. Some
students had noticed the introduction of lintingmessages to their submis‐
sions, which tested provides for all supported programming languages
(using ESLint for JavaScript). However they believed this was an addition
to the existing JavaScript framework and identified it as an improvement
on the feedback they received.

As an extension to the experiment, we prepared a JavaScript exercise that
was automatically reviewed using both the JavaScript testing framework
and tested. Students were asked to submit their solutions twice and
compare the feedback they received from both frameworks. Except
for the additional linter information provided by tested, students did
not observe any significant differences in the quality of the feedback
they received. However, some students did notice that it took somewhat
longer to get feedback from tested than from the JavaScript testing
framework.

60

2.10. Evaluation of the tested framework

0 1 2 3 4

Bash

Python

Java

JavaScript

Haskell

C

0.5

0.8

1.9

0.8

1.9

0.6

0.2

0.4

3.4

0.1

2.1

2.1

Execution time in seconds
(smaller is better)

Language‐specific framework tested

Figure 2.7. Runtime performance of tested versus language‐specific testing
frameworks. For each programming language, we evaluated a correct sub‐
mission for the same exercise with a language‐specific testing framework and
with tested.

Prompted by this feedback, we investigated the performance of tested
and compared it against the language‐specific testing frameworks we
routinely use in our educational practice. We measured the execution
time of the evaluation of a correct submission for one exercise, using
both tested and a language‐specific testing framework (figure 2.7). This
way we were able to compare timings for Bash, Python, Java, JavaScript,
Haskell and C. We did not include Kotlin in this experiment, a language
that is also supported in tested, as Dodona does not have a language‐
specific testing framework for Kotlin. The exercise used is simple: it
requires implementing a function echo that returns its argument. As
a result, the time measured is almost completely testing framework
overhead, as the execution time of the submission is negligible. The
implemented function was called 50 times with different arguments.

Our performance analysis indicates that an evaluation by tested is
slower for Bash, Python and JavaScript. This does not come as a surprise,
since tested needs to do additional work in generating test code in the
programming language of the submission and in serializing the results
after executing the test code. In addition, there are also differences in

61

Chapter 2. An educational testing framework

what evaluations are performed. For example, the JavaScript judge does
not lint submissions where tested systematically applies linting for all
supported languages. However, evaluations by tested are faster for Java,
Haskell and C. This is mainly due to implementation differences in the
testing frameworks, especially in the compilation step. In tested, we
have implemented the compilation step (and code generation) with as
little overhead the case, which is not always possible in language‐specific
testing frameworks. For example, the Java framework relies on jUnit,
while tested does not have any Java dependencies aside from the Java
language itself.

Performance remains a focus area for future work. Automated testing
frameworks often deliver just‐in‐time feedback and are integrated into
highly interactive learning environments. As a result, students who fre‐
quently submit solutions during hands‐on sessions or while working on
homework assignments expect immediate results and get frustrated by
poor response times. Performance is therefore critical in educational
software testing. When implementing tested, we paid specific attention
to reduce overhead during test code generation, compilation and execu‐
tion, for example by bundling multiple contexts in a single compilation
and execution step, making the performance of tested acceptable.

However, conditions in which tested may bundle contexts could still
be improved, so that more contexts from the same test suite could be
compiled and executed together. Since test code generation only de‐
pends on a test suite and a selected programming language, we might
also consider caching as a way to reuse generated test code for all sub‐
missions of a programming exercise that share the same programming
language. Performance could also be boosted by linting submissions in
parallel to testing them, where tested currently runs these two steps
sequentially.

2.11. Conclusion

Educational software testing is the application of testing frameworks to
provide automated feedback on solutions that students submit for pro‐
gramming exercises. We identified input/output testing and unit testing
as two opposing strategies commonly used in educational practice, and
investigated the impact of both approaches on programming language
support of the frameworks. Testing frameworks adopting unit testing
enable fine‐grained software testing, but are highly language specific. In‐
put/output testing, on the other hand, is more generic in that it supports

62

2.11. Conclusion

multiple programming languages, but imposes severe restrictions on
programming exercises, granularity of testing and quality of feedback.

Our goal was to combine the best of both worlds. We formulated re‐
quirements for programming‐language‐agnostic testing frameworks that
combine unit testing with support for multiple programming languages.
We see three clear benefits for the adoption of such frameworks. First,
exercise designers only need to know and use a single testing framework
to create programming exercises with support for automated feedback,
irrespective of the target programming language, instead of switching to
a new testing framework for each programming language, taking into
account restrictions on what can be tested or giving up on the quality of
feedback.

Second, programming exercises only need a single test suite to evaluate
solutions in amultitude of programming languages. This allows teachers
to reuse the same programming exercise for a language of their choice or
to give students the freedom to solve exercises in their preferred language.
Third, it also saves time and effort to support educational software testing
for new programming languages as common functionality of testing
frameworks is implemented once in a generic way, and only needs to be
complemented with a thin layer of language specific configurations for
each individual programming language.

To validate the feasibility of designing programming‐language‐agnostic
testing frameworks, we implemented a proof‐of‐concept framework
called tested. Having such a prototype also enabled us to evaluate
the framework in educational practice. The realization of tested con‐
firms that the requirements for programming‐language‐agnostic testing
frameworks can be met and provides a framework that can be used in
educational practice. At the same time, working on and with tested also
brought forward some areas for improvement and further research.

63

64

Chapter 3.

A domain-specific language for
creating programming exercises

Programs must be written for people to read, and only incid‐
entally for machines to execute.

— Abelson & Sussman, Structure and Interpretation of
Computer Programs

Automated software testing is widely used in programming education to
validate the correct behaviour of submissions for programming exercises.
There are twodominant testing approaches: input/output testing andunit
testing. Input/output testing is largely independent of the programming
language, but its black‐box nature makes it difficult to provide detailed
feedback. Unit testing, on the other hand, typically requires a separate
test suite for each target programming language.

This chapter introduces tested‐dsl as a domain‐specific language (dsl)
designed to simplify authoring language‐agnostic test suites for program‐
ming exercises with automated assessment support. Test suites written
using tested‐dsl i) share the same declarative structure and testing
functionality across programming languages, ii) bridge the gap between
input/output testing and unit testing, and iii) allow for expressing test
code in a language‐agnostic way. The educational software testing frame‐
work tested allows for automated assessment using language‐agnostic
test suites expressed in tested‐dsl, as demonstrated in a case study. Ad‐
ditionally, tested now includes a template engine based on tested‐dsl
for authoring task descriptions that include language‐agnostic specifica‐
tions of data types, literal values, identifiers, and code fragments.

65

Chapter 3. A domain‐specific language for creating programming exercises

3.1. Background andmotivation

3.1.1. Educational software testing

Software testing is the validation and verification of a systemderived from
source code (Ammann andOffutt 2016). Two complementary approaches
prevail: dynamic testing executes the source code with a given suite of
test cases, whereas static testing analyses the source code without ex‐
ecuting it (Romli et al. 2010). Both approaches might be done via manual
or automated processes, based on a specification (Pieterse 2013). In
modern software development, automated testing has become a stand‐
ard practice for continuous integration and continuous development of
living codebases, where both the codebase and the system requirements
might evolve over time (Winters et al. 2020).

The minimum requirement that is tested is correctness, which is the
essential purpose of software testing (Pan 1999). The desired or correct
behaviours are specified as the functional requirements of the program
and say how a programmust behave (Bass et al. 2021). Automated testing
for correctness needs some kind of oracle to tell if the functional require‐
ments are satisfied. Other software quality factors (the non‐functional re‐
quirements) that may be tested are its functionality (reliability, usability,
integrity), engineering (efficiency, testability, documentation, structure)
and adaptability (flexibility, reusability, maintainability) (Hetzel 1988).

Educational software testing is the application of automated software
testing to source code students submit for programming exercises (de
Souza et al. 2016; Keuning et al. 2018; Paiva, Leal et al. 2022; Staubitz,
Teusner et al. 2017). For brevity, the source code under test is be called a
submission. Whatmakes educational software testing unique is that each
programming exercise has a fixed specification, against which multiple
submissions must be validated and verified (Wilcox 2016). Submissions
are usually small to moderate in size, with all source code contained in a
single file in most cases.

The main purpose of educational software testing is automated assess‐
ment of submissions (Berssanette and de Francisco 2021), which may
come as feedback and/or as a grade (Caiza and del Alamo 2013). Assess‐
ments can be provided instantly upon each submission while students
work on their solution. Such a continuous assessment provides “feed
back” on how students performed and “feed forward” on what to do
next before making a new submission for the same assignment (Cheang
et al. 2003; Higgins et al. 2003; Luck and Joy 1999). Assessments can also
happen after a submission deadline has passed, and provide students

66

3.1. Background and motivation

“feed back” on their overall performance (Hattie and Timperley 2007;
Timmis et al. 2016).

3.1.2. Programming exercises

Efforts to standardize the representation of programming exercises have
been numerous, encompassing various strategies, such as combining
the metadata, assets and task description into one formally structured
document (Mishra and Edwards 2023; Paiva, Queirós et al. 2020; Queirós
and Leal 2011, 2012; Swacha 2018), a predefined directory structure (Ver‐
hoeff 2008), or a combination thereof (Edwards et al. 2008; Strickroth
et al. 2015). The objective of these initiatives is laudable: increasing
the fairness of programming exercises as digital educational resources
that are Findable, Accessible, Interoperable and Reusable (Wilkinson
et al. 2016). Without exception, all of them support (automated) assess‐
ment, showing its importance for programming exercises. However, due
to their generic nature, these exercise standards only provide support
for assessment metadata and assets, and leave the actual representa‐
tion of test suites, software testing frameworks, and dependencies on
runtime environments open for implementation. But to make program‐
ming exercises truly interoperable, test suites and testing frameworks
are no implementation detail. As a result, any promise of plug‐and‐play
programming exercises that can be freely exchanged between learning
platforms has not yet been resolved (Ala‐Mutka 2005; Ihantola et al. 2010;
Messer et al. 2024; Paiva, Leal et al. 2022).

In this chapter, we do not focus on the overall representation of pro‐
gramming exercises as such, but rather on the specific aspects of task
descriptions and test suites, which are key for automated assessment.
We explore how to design programming exercises that can be assessed
automatically across different programming languages. This capability
is essential for creating exercises that accept submissions in various
languages and allow for dynamic testing using a single test suite (Staub‐
itz, Klement et al. 2015). For that purpose, test suites capturing the
requirements of programming exercises must ideally be specified in
a language‐agnostic way. We focus in the first place on validating the
correctness of submissions as a way of formative feedback, and not per
se on grading submissions as a way of summative feedback.

Designing programming exercises that apply across programming lan‐
guages is relevant in educational practice (Murphy et al. 2017). Exercises
whose primary focus is problem‐solving, data structures or algorithms
are by nature only loosely bound to a particular programming language,

67

Chapter 3. A domain‐specific language for creating programming exercises

so teachers may want to leave the choice of language to individual stu‐
dents. This is especially useful in courses taken by mixed populations of
students trained in different programming languages or where choice of
the most appropriate language is an explicit challenge in the problem‐
solving process. But even programming courses that teach a particular
programming language might benefit from exercise repositories built
around the fair‐principles, where exercises restricted to a single pro‐
gramming language are simply less reusable.

3.1.3. Input/output testing

The need for programming exercises supporting automated assessment
across programming languages is also reflected by the fact that the most
often used architecture for test automation in educational practice is
based on standard input and output (Douce et al. 2005; Ullah et al. 2018;
Wasik et al. 2018). The only language‐specific stepwith such a data‐driven
approach is the optional compilation and then execution of submissions,
which read from the standard input stream (stdin) and write to the stand‐
ard output streams (stdout and stderr). This approach is broadly applic‐
able, as almost all programming languages support standard input and
output.

Testing itself treats submissions as black boxes by streaming input data
via standard input, capturing output data via standard output and stand‐
ard error, and running standalone test oracles to validate the correctness
of the output data generated by the submission (figure 3.1). Teachers
can describe the task specification of input/output exercises to students,
independent of any programming language. Such a task description only
specifies the formatting of input and output data, and prescribes how
input data must be transformed into output data.

The black‐box and weakly typed nature of input/output testing comes
with serious pedagogical downsides. Standard input and output are the
only interfaces for reaching into and revealing internal behaviour of the
submission. While other data flows and user interactions are possible
in software applications (Khorram 2022), they cannot be used here. As
students can only use the execution entry point (often themain function),
only the behaviour of the submission as a whole can be tested. Individual
steps (e.g. functions or classes) are not reachable. Feedback can thus
only be provided at a holistic level.

Although standard input and output may in theory consume and produce
binary data, programming exercises commonly use text‐formatted input
and output data. Implementing the interface thus involves parsing a

Binary data via
standard input
and output are not
fun, as anyone
who has tried it
will attest to.

68

3.1. Background and motivation

stdin

submission
main stdout

stderr

built‐in oracle

custom oracle

Figure 3.1. Architecture of a test execution engine based on standard input and
output. The entry point of the program execution (often the main function)
and standard input and output are the only interface for reaching into and
revealing internal behaviour of the submission. Assessing the submission
for a single test case comes down to running the executable (thick bordered
boxes) with input data streamed to standard input (stdin), capturing output
data from its standard output and error streams (stdout and stderr), and run‐
ning standalone oracles to validate whether the output data generated by the
submission satisfies the requirements from the task description.

weakly typed external string representation of input data into a strongly
typed internal representation, and converting a strongly typed internal
representation of output data into a properly formatted external string
representation that is used for validation. As a result, test oracles have
to process weakly typed output data as well.

3.1.4. Unit testing

Unit testing largely resolves these issues. Unit testing frameworks have
become the norm in software development practice (Runeson 2006), and
have also found their way into educational practice (Bettini et al. 2004;
Ellsworth et al. 2004). Such frameworks run test cases as scripts that
access internal interfaces from specific sections (units) of the submission
and rely on oracles to validate that the units behave as intended. A unit
could still be the entire submission (e.g. by calling the main function),
but more commonly it is an individual function (in procedural or func‐
tional programming) or an individual class that is accessed through its
public properties and methods (in object‐oriented programming). By
first writing tests for the smallest testable units, and then compound
behaviours between those, one can gradually build up comprehensive
tests for more complex programming exercises (Pan 1999). In addition,
oracles can process strongly typed values returned by calling functions
or methods or by accessing properties, allowing for more versatile cor‐
rectness testing (e.g. testing real‐valued numbers are correct up to an
expected accuracy).

69

Chapter 3. A domain‐specific language for creating programming exercises

harness
test script

statement|expression

statement|expression

statement|expression

statement|expression

statement|expression

submission

interfaces

exception
return value

built‐in oracle

custom oracle

Figure 3.2. Architecture of a unit test execution engine. Assessing a submission
for a single test case comes down to compiling the submission along with the
test code (including test script and oracles) into an executable test harness
(thick‐bordered box). The test script consists of a set of statements and expres‐
sions. The harness executes the test script, whose statements and expressions
may access public interfaces of a narrow section of the submitted code (unit),
captures outputs (return values, exceptions) when executing statements and
expressions in the script, and runs oracles to validate these outputs.

Traditional unit testing frameworks compile the submission along with
the test script and oracles into a single executable called a test harness
(figure 3.2). As a consequence, they often require the test script and or‐
acles to be written in the same programming language as the submission.
This restriction is rarely problematic in software development practice
sensu latu, but hampers accepting submissions in multiple program‐
ming languages in an educational context, unless separate test suites
are provided for each target language. This not only duplicates work,
but unit testing frameworks for different languages also dictate how test
suites are written (Agrawal and Reed 2022; Nayak et al. 2022), which
differs from framework to framework.

3.1.5. TESTed 1.0

We introduced tested (Strijbol, Van Petegem et al. 2023; chapter 2) as
an open‐source educational software testing framework that accepts
submissions in multiple programming languages and performs both in‐
put/output testing and unit testing, based on a single language‐agnostic
test suite. Currently, tested supports evaluating submissions in Bash,
C, C#, Haskell, Java, JavaScript, Kotlin, and Python. Its abstract pro‐
gramming language engine transforms between language‐agnostic and

70

3.1. Background and motivation

language‐specific representations of strongly typed values, expressions,
and statements. This allows tested to generate language‐specific test
harnesses by converting language‐agnostic test scripts on the fly into
the programming language of a submission (figure 3.3). Executing a
language‐specific test harness yields strongly typed objects in a language‐
specific representation. The language‐specific test harness then converts
these objects back into abstract formbefore exporting them to a language‐
agnostic test harness for validation by oracles that run independent of
the language‐specific test harness.

3.1.6. Organization of this chapter

This chapter introduces tested‐dsl as a domain‐specific language (dsl)
to simplify authoring test suites for language‐agnostic programming exer‐
cises with support for automated assessment (section 3.2). We investigate
its versatility, expressiveness, and general features by extending tested
with support for tested‐dsl. This yields an open‐source implementation
of the domain‐specific language itself. It also replaces the verbose and
ad‐hoc json specification of test suites from tested version 1.0, which
closely followed the internal representation of test suites. Statements
and expressions of the abstract programming language, for example,
were expressed in json as hierarchical structures that resemble abstract
syntax trees.

We then apply tested‐dsl to task descriptions (section 3.2.4), which
allows creating task descriptions with language‐specific programming
interfaces (data types, literal values, identifiers, and code fragments)
expressed in a language‐agnosticway. A template engine then transforms
the language‐agnostic interface bindings into specific representations for
any target programming language supported by tested, while preserving
other formatting of task descriptions.

This is followed by a set of examples illustrating the use of tested‐dsl
(section 3.3). We then elaborate on a case study of using tested‐dsl in
educational practice (section 3.4.1) and analyse the performance of us‐
ing the domain‐specific language (section 3.4.2). The results and impact
of our contributions are discussed at length (section 3.5). We conclude
that extending tested with a domain‐specific language for specifying
test suites and task descriptions provides an expressive and ergonomic
solution. It allows for authoring a diverse set of language‐agnostic pro‐
gramming exercises that support automated assessment in educational
practice. We close by drawing the roadmap for some ongoing and future
work (section 3.6).

71

Chapter 3. A domain‐specific language for creating programming exercises

harness (language agnostic, tested‐dsl)

test script

statement|expression

statement|expression

statement|expression

statement|expression

statement|expression

harness (language specific)

test code
main call

statement|expression

statement|expression

statement|expression

statement|expression

statement|expression

submission

interfaces

main

exception
return value

custom oracle

exception
return value

compilation
results

stdout
stderr
files

exit status

built‐in oracle

built‐in oracle

custom oracle

built‐in oracle

custom oracle

built‐in oracle

arguments
stdin
files

Figure 3.3. Architecture of the test execution engine of tested. Since tested
supports both input/output testing and unit testing, its architecture is a combin‐
ation of figures 3.1 and 3.2. tested achieves this by running a language‐specific
harness (white box) within the language‐agnostic test harness (grey box). As‐
sessing a submission for a single test case again comes down to compiling the
submission along with test code into an executable test harness. The input
data are passed to the executable, and the test script consists of a set of state‐
ments and expressions. However, the strongly typed values, expressions and
statements in the test script may now be in a language‐agnostic representation.
Before compilation, the test script is transformed (blue arrows) into language‐
specific test code. While the main call interacts with the main function of the
submission, other tests access public interfaces of the submission (a single
statement/expression is illustrated here). If a language‐specific oracle is used,
it is included in the language‐specific harness. Otherwise, the strongly‐typed
outputs, togetherwith the outputs from themain function, are processed in the
language‐agnostic harness. To make this possible, strongly‐typed outputs are
transformed from a language‐specific representation into a language‐agnostic
representation (green arrow). Finally, oracles in the language‐agnostic har‐
ness evaluate the outputs. To make this possible, strongly typed values are
converted in to the language‐specific representation of the oracle (blue arrow).

72

3.2. TESTed‐DSL

1 - unit: "Greet function"
2 cases:
3 - expression: "greet('World')"
4 return: "Hello, World!"

Listing 3.1.Hello, World! example of a test suite in tested‐dsl. The test suite has
a single test case that calls the function greetwith string argument "World".
The function is expected to return the string "Hello, World!".

3.2. TESTed-DSL

tested‐dsl was conceived as a domain‐specific language for language‐
agnostic test suites of programming exercises that support automated
assessment. Such a test suite generally consists of two parts: individual
tests (including test data) and a structured grouping of tests into units.
In this section, we first introduce the structure of the domain‐specific
language, followed by the abstract programming language that is used to
represent test data, expressions, and statements.

3.2.1. Test suite structure

tested‐dsl uses yaml (Ben‐Kiki et al. 2021) as a markup language for
describing test suites that are preferably specified in a language‐agnostic
way. The structure of test suites is formally specified in a json Schema.1
Note that this schema can be plugged into text editors or integrated
development environments for syntax highlighting, autocompletion,
and validation. Listing 3.1 shows aminimal example of a test suite. More
elaborate examples are discussed in section 3.3.

The test suites have a hierarchical structure: a test suite may have mul‐
tiple units. Each unit is tested by multiple test cases. A test case consists
of setup code, an optionalmain call, a script, and teardown code. The
minimal example has a single unit with a single test case, and no setup,
main call, nor teardown. The main call and the script together comprise
the tests for the test case (figure 3.3). The structure of test suites using the
domain‐specific language is identical to json test suites (section 2.6.1),
but the terminology used by the domain‐specific language aligns more
with the literature.

The input data for the main call is made available as files, passed as
arguments, streamed through standard input (stdin), or any combination

1https://github.com/dodona-edu/universal-judge/blob/master/tested/
dsl/schema.json

The Dodona
terminology is
also supported
(using tab, context,
test case, and test
respectively).

73

https://github.com/dodona-edu/universal-judge/blob/master/tested/dsl/schema.json
https://github.com/dodona-edu/universal-judge/blob/master/tested/dsl/schema.json

Chapter 3. A domain‐specific language for creating programming exercises

thereof. The input data for the script are the statements and expressions
it consists of. The minimal example has a single script with a single test
expression. However, in tested‐dsl, there is no separation between
these types of tests: all tests (the main call and the script) are given as
individual tests of a test case. The type of the test is automatically derived
from the available input. If standard input or arguments are present, the
test is considered to be a main call and will be executed as such.

When tested runs a test, it catches any runtime exception and output
sent through the standard output streams (stdout and stderr). It also
catches the return value when expressions are evaluated (as is done in
the minimal example) and the exit status when the process running the
language‐specific test harness terminates.

Test suites can specify a value for each possible input and an expected
value for each possible output of a test. Most inputs and outputs of tests
are weakly typed: arguments, standard input and output, (text) files, and
messages of runtime exceptions are always strings, and the exit status is
always an integer. Return values, on the other hand, are strongly typed.

The validation of the actual values against the expected values happens
with oracles. By default, the built‐in oracles of tested are used with
default expected values. For example, an exit code must be 0, and there
must not be any output on standard error. To avoid unnecessary feedback,
correct tests against a default value are not reported. For example, if
the exit code of the submission is not zero, this will be reported as a
failure. However, it is distracting to show a successful zero exit code for
all test cases (e.g. even those that test function calls). For that reason,
the exit code test is typically hidden. In the minimal example, the exit
code would be checked, but not reported unless it was non‐zero.

For all outputs, the built‐in oracles perform equality testing: the actual
value must match the expected value. However, the built‐in oracles fea‐
ture adjustable parameters that offer a degree of flexibility in this equality
testing. Examples include case‐insensitive comparisons for strings and
a tolerance for slight inaccuracies in real number comparisons. Import‐
antly, these parameter settings adhere to an inheritance mechanism
across the test suite hierarchy. Setting a parameter at a certain node
within the suite takes precedence over any similar setting at a higher
level and extends to all subordinate nodes.

Custom oracles can also overrule built‐in oracles for standard output
streams (stdout and stderr) and return values. Custom oracles are called
with the expected and actual values, in addition to some metadata about
the test. These allow for custom validations beyond equality testing.

74

3.2. TESTed‐DSL

They can also be useful for non‐deterministic results, e.g. results that
depend on the current date.

3.2.2. Abstract programming language

tested‐dsl adopts a subset of the Python programming language as
the language‐agnostic representation of expressions, statements, and
strongly typed values. The subset is deliberately chosen to suit the spe‐
cific needs of language‐agnostic test suites, and therefore does not en‐
compass all Python features.

An expression in the abstract programming language may consist of
literals, identifiers, function calls, constructors, method calls, and prop‐
erty access. Functions, constructors, and methods take expressions as
positional arguments or as named arguments. A statement is either an
assignment or an expression. Unlike other programming languages,
Python has no way to differentiate constructors from function calls. Be‐
cause that difference is important to make when transforming language‐
agnostic expressions into the specific syntax of some programming lan‐
guages (e.g. using the new keyword), tested‐dsl follows the convention
that constructors call a function whose name begins with a capital. An‐
other convention is that variables that are all caps are considered global
variables. Otherwise, tested‐dsl follows Python conventions where
possible.

A strongly typed value is obtained when tested evaluates a test expres‐
sion. These return values can be denoted as native yaml scalars (null,
booleans,integers,real numbers, andstrings),sequences,sets
(using the !!set tag), and mappings. By default, tested‐dsl resolves
these yaml objects as basic types of tested. Casting to advanced types
of tested is possible by using explicit yaml data types (!type tag). As
such, an expected return value 42 with tested data type int64 can be
expressed as !int64 42.

yaml strings are interpreted as literal strings by default, but are inter‐
preted as expressions in the abstract programming language when the
!expression tag is used. As a result, !set [1, 2, 3] can also be
denoted as !expression "set([1, 2, 3])".

3.2.3. Language-specific test suites

As the abstract representation of tested‐dsl is independent of any pro‐
gramming language, not every feature and data type of every program‐

75

Chapter 3. A domain‐specific language for creating programming exercises

ming language is supported. Examples include object equality check‐
ing (in object‐oriented languages) or pointers (in C). To accommodate
this, tested‐dsl also supports language‐specific representations. The
language‐specific representations are copied verbatim into the language‐
specific test harness and bypass the language‐agnostic harness. This
means that all language features of the programming languages can be
used.

In addition to language‐specific statements and expressions, tested also
allows writing custom oracles for return values whose expected data
type is not supported by the abstract representation of tested. Because
such oracles run inside the language‐specific harness, they also bypass
the need for transforming return values, as is the case for traditional
language‐specific unit testing frameworks.

However, these language‐specific features have to be used sparingly,
as they restrict testing to programming languages for which language‐
specific representations and custom oracles are specified. Listing 3.6
contains an example of a test suite that uses language‐specific represent‐
ations.

3.2.4. Language-agnostic task descriptions

For automated assessment to work, task descriptions of programming
exercises have to specify what the submissions must implement (the
interface) and how submissions must behave (interactions with the in‐
terface). The expected behaviour prescribes what type of input data
is passed when interfaces are accessed, what type of output data they
must return and how they need to transform input data into output data.
When references to and interactions with these interfaces have specific
bindings to programming languages, they result in language‐specific
task descriptions. For example, if a submission must implement a func‐
tion that filters a list, the naming convention of the function and the
values passed to this function (a list) will look different depending on the
programming language.

The same rationale for having a single, language‐agnostic test suite also
applies to task descriptions. A similar approach to avoid the need to au‐
thor language‐specific task descriptions for each target programming lan‐
guage of an exercise can be followed. There are some differences though.
First of all, language‐specific interface references and interactions in
task descriptions are usually embedded in natural language content
formatted with some plaintext markup language (e.g. Markdown, html
or reStructuredText). We therefore extended tested with an engine

76

3.2. TESTed‐DSL

that supports authoring task descriptions as Jinja2 templates (Ronacher
and Lord 2022) with language‐agnostic interface bindings embedded as
{{binding}} placeholders in plain‐text documents. The engine then
automatically transforms each placeholder into a specific representa‐
tion for any target programming language supported by tested, while
preserving surrounding formatting of task descriptions.

For each type of interface with language‐specific bindings, the engine
provides a corresponding Python variable or function that identifies the
interface. Interface functions take a language‐agnostic representation
(a string) of the interaction as their first argument and return its corres‐
ponding language‐specific representation (also a string) that replaces
the placeholder.

Interface interactions in task description templates are natural coun‐
terparts of their representations in tested‐dsl test suites: statements,
expressions, and literal values. However, in task description templates,
the engine makes no difference between statements, expressions, and
literal values. All are represented as a statement. To reference a named
function, the snake case version of its identifier is passed to the function
identifying the interface in tested‐dsl s̓ abstract programming language:
variables (variable), functions (function), classes (class), methods
(method), properties (property) and parameters (parameter). The
engine formats these according to the naming conventions for the target
programming language. For example, function('the_function')
will result in the string TheFunction in C#.

In addition, the engine also exposes a datatype function, which can
be passed the name of a basic or advanced data type. For example,
datatype('integer') denotes the basic type integer. This function
returns an object, that when converted to a string by the engine, results
in the formal name in the target programming language. The object also
supports two properties: singular and plural. These methods return
the informal name for the type (in singular or plural form respectively)
in the target programming language.

The engine also exposes some additional environment variables: the
target programming language (language), the target natural language
(natural_language) and the namespace (namespace) that is specified
for some languages. These environment variables are particularly use‐
ful in combination with Jinja2 control structures, for example, to add
language‐specific sections to task descriptions.

Task description templates can also reuse the language‐agnostic specific‐
ations of tested‐dsl test suites for code fragments that illustrate the

77

Chapter 3. A domain‐specific language for creating programming exercises

expected behaviour of interfaces with example interactions correspond‐
ing to test cases. The template engine renders these fragments in the
style of Python doctests: language‐specific statements with language‐
specific string representations of expected outputs. In task description
mode, the engine ignores features of test suite specifications that steer
the testing process. For example, task descriptions only need expected
outputs of interface interactions and no oracles to effectively validate
their correct behaviour. tested has special support for including these
test suites in Markdown files as code blocks: ```dsl ... ```.

3.3. Illustrative examples

This section contains some examples of language‐agnostic test suites
and task descriptions.

3.3.1. Language-agnostic test suites

Rather than showcasing all features supported by tested‐dsl, the ex‐
amples want to give an idea of what the yaml test suites look like. We
begin with the most common scenario: a language‐agnostic test suite
that relies on built‐in oracles. Next, we provide two more advanced test
suites that illustrate how advanced data types and custom oracles are
handled in the dsl, while also illustrating the versatility of tested‐dsl
in describing test suites for different types of programming exercises.

Listing 3.2 illustrates the hierarchical structure of units, test cases, and
tests (in a script). The test suite has a single unit Cipher (line 2) contain‐
ing all test cases to validate the correct behaviour of submissions that
must define the class Cipher.2

The unit has multiple test cases, but only a single test case (lines 4–28) is
shown completely for illustrative purposes. The first test case does not
provide inputs that require scheduling a main call, as it only expects sub‐
missions to implement a class definition. The first statement of its script
calls the constructor of the class with two string arguments, instantiating
an object that is assigned to the variable cipher01 (line 5). The next two
expressions access the properties grid (line 6) and map (line 12) of the
object to validate they are properly initialized by the constructor. The
expected value of the grid property is specified as a nested sequence
of strings that represents a 4 × 4 grid of characters (lines 7–11). Note

2https://dodona.be/en/activities/636251211/

78

https://dodona.be/en/activities/636251211/

3.3. Illustrative examples

that we have used yaml block style notation (using dashes) for the outer
sequence and yaml flow style notation (elements enclosed in square
brackets and separated by commas) for the inner sequences of the expec‐
ted value. The expected value of the map property is specified using the
yaml block style notation of a mapping from strings onto strings (lines
13–20).

The next two expressions call the methods encode (line 21) and decode
(line 23) on the object with a single string argument, and are expected to
return a string value (lines 22 and 24). The last two expressions call the
same methods encode (line 25) and decode (line 27) with other string
arguments, and are now expected to raise an exception with the message
invalid message (lines 26 and 28). This test suite provides language‐
agnostic representations for all statements, expressions, and strongly
typed values, so tested can use it to validate submissions in any suppor‐
ted programming language (including future supported languages).

tested‐dsl makes an important distinction between expressions and
statements (expression and statement). The evaluation of expres‐
sions returns a strongly typed value that is captured by the language‐
specific test harness. The default expected value is any object having data
type nothing (such as null or None). However, the return attribute
can be used to specify the expected value in the test suite. Statements,
on the other hand, are executed by the language‐specific test harness.
Even though the tested‐dsl statement might actually be an expression
in some target languages (like the assignment in line 5), tested will
accept any return value resulting from executing the statement (other
outputs are still captured and tested). This behaviour cannot be altered:
tested‐dsl does not allow specifying an expected return value and/or a
custom return oracle for statements.

tested is designed in part to run as a standalone command line tool
to generate structured feedback on standard output. It is also well‐
equipped for seamless integration with online learning platforms that
display task description of programming exercises, accept student sub‐
missions, run tested in their backend and render the resulting feedback.
tap (Schlueter et al. 2022) (Test Anything Protocol) is the de facto standard
used by unit testing frameworks for reporting test results. For educa‐
tional purposes, however, tested streams richer and more structured
feedback to standard output, in a format formally specified in a json
Schema.3 Dodona (Van Petegem, Maertens et al. 2023), for example,
renders each unit of test cases (from listing 3.2) in a separate tab and
visually groups all tests from the same test case inside a card (figure 3.4).

3https://github.com/dodona-edu/dodona/blob/main/public/schemas/
partial_output.json

79

 https://github.com/dodona-edu/dodona/blob/main/public/schemas/partial_output.json
 https://github.com/dodona-edu/dodona/blob/main/public/schemas/partial_output.json

Chapter 3. A domain‐specific language for creating programming exercises

1 units:
2 - unit: 'Cipher'
3 cases:
4 - script:
5 - statement: "cipher01 = Cipher('ABCD', '1AX3S1M2PYZ')"
6 - expression: "cipher01.grid"
7 return:
8 - ['-', 'A', 'X', '-']
9 - ['-', '-', 'S', '-']

10 - ['M', '-', '-', 'P']
11 - ['Y', 'Z', '-', '-']
12 - expression: "cipher01.map"
13 return:
14 'A': 'AB'
15 'X': 'AC'
16 'S': 'BC'
17 'M': 'CA'
18 'P': 'CD'
19 'Y': 'DA'
20 'Z': 'DB'
21 - expression: "cipher01.encode('spam')"
22 return: 'BCCDABCA'
23 - expression: "cipher01.decode('BCCDABCA')"
24 return: 'SPAM'
25 - expression: "cipher01.encode('eggs')"
26 exception: 'invalid message'
27 - expression: "cipher01.decode('BCCDBACA')"
28 exception: 'invalid message'
29 - script:
30 # statements and expressions of the second script

Listing 3.2. Language‐agnostic test suite to validate the correct behaviour of
submissions that must define the class Cipher, whose objects have properties
grid and map, and methods encode and decode. Only the first test case is
shown completely for illustrative purposes. Because this test suite only has a
single unit, the units (line 1) could be removed, making the list of units the
top‐level construct in the test suite.

80

3.3. Illustrative examples

50/50 correct: 󰄬

󰄬 󰄬

Cipher Code

Correct tests 󰈉

#1 · 󰄬 Correct

󰄬

󰄬

󰄬

󰄬

󰄬

󰄬

󰄬

let cipher01 = new Cipher("ABCD", "1AX3S1M2PYZ")

cipher01.grid

return

[["-", "A", "X", "-"], ["-", "-", "S", "-"], ["M", "-", "-", "P"], ["Y", "Z", "-", "-"]]

cipher01.map

return

{"A": "AB", "X": "AC", "S": "BC", "M": "CA", "P": "CD", "Y": "DA", "Z": "DB"}

cipher01.encode("spam")
return

"BCCDABCA"

cipher01.decode("BCCDABCA")
return

"SPAM"

cipher01.encode("eggs")

exception

AssertionError: invalid message

cipher01.decode("BCCDBACA")

exception

AssertionError: invalid message

󰅀

#2 · 󰄬 Correct

󰄬 let cipher02 = new Cipher("HISPAYMENT", "14K1S2DL1NW4P2R1H3T3U2O6X3A1F6B1G4I1C2V1Y3E2M2J")

󰅀

󰈈

Figure 3.4.Dodona rendering of test results after tested validated a correct JavaS‐
cript submission for the programming exercise configured with the language‐
agnostic test suite from listing 3.2. All tests from a single test case are visually
grouped inside a card. Green check marks show that all tests of each script
succeeded. Each expression has one reported output – either its return value
(return) or a runtime exception (exception) – that is validated to be correct
as indicated by the green colour of the header for the reported output.

81

Chapter 3. A domain‐specific language for creating programming exercises

Because JavaScript code was submitted in this case, tested adopted the
syntax and conventions configured in its JavaScript module to format
all statements, expressions, and return values in the feedback. The
JavaScript‐specific syntax highlighting is done by Dodona as part of the
process of rendering the feedback.

Parallel to dynamic testing, tested flags programming errors, bugs, styl‐
istic errors and suspicious constructs by running a language‐specific
linter (see section 2.7.6) on each submission (Truong et al. 2005). Dodona
displays these linter messages inline in the source code of the submis‐
sion, in a separate tab called Code. Linters are preconfigured in the
language‐specific modules of tested, so no additional configuration is
needed in the test suite. Test suites may, however, overrule these linter
configurations.

Recoupling exercise: multiple functions and advanced data types

Listing 3.3 shows a language‐agnostic test suite for an exercise that asks
to implement two functions: divide and recouple.4 The first function
must divide the given string into a number of parts. The second func‐
tion must split each given string and then recombine the corresponding
parts into new strings. As part of the problem‐solving process, students
may discover a divide‐and‐conquer strategy: the implementation of the
second function may call the first function that solves a subtask.

However, the test suite validates the correct behaviour of both functions
in two separate units. This example illustrates that tested‐dsl allows
leaving out the grouping of tests in a script as a shorthand for the common
case of test cases whose script has a single test. The first two test cases
for the divide function (lines 4–7) use the return attribute with flow
style notation of a yaml sequence to specify the function call is expected
to return a sequence of strings as basic types of tested. As a result, both
lists and tuples will, for example, be accepted for Python submissions.
On the contrary, the first two test cases for the recouple function (lines
11–14) use an explicit cast to force the return value to be a list (line 12) or
a tuple (line 14) for languages like Python that make the difference. For
Java and JavaScript submissions, however, arrays are accepted in both
cases. The same observation holds for the first argument passed to the
function: a list (line 11) or a tuple (line 13) for languages that make the
difference, or the default sequence type for other languages.

Separating validation of the two functions across two separate units
allows students to immediately pinpoint what functions already behave

4https://dodona.be/en/activities/1145516160/

82

https://dodona.be/en/activities/1145516160/

3.3. Illustrative examples

1 units:
2 - unit: "Divide"
3 scripts:
4 - expression: "divide('accost', 3)"
5 return: ["ac", "co", "st"]
6 - expression: "divide('COMMUNED', 4)"
7 return: ["CO", "MM", "UN", "ED"]
8 - expression: "divide('programming', 5)"
9 exception: "invalid division"

10 - unit: "Recouple"
11 scripts:
12 - expression: "recouple(['ACcoST', 'COmmIT', 'LAunCH',

'DEedED'], 3)"↪→

13 return: !list ["ACCOLADE", "communed", "STITCHED"]
14 - expression: "recouple(('ACCOLADE', 'communed',

'STITCHED'), 4)"↪→

15 return: !tuple ["ACcoST", "COmmIT", "LAunCH", "DEedED"]
16 - expression: "recouple(['programming', 'computer',

'games'], 5)"↪→

17 exception: "invalid division"

Listing 3.3. Language‐agnostic test suite to validate correct behaviour of submis‐
sions that must define the functions divide and recouple. Because each
test case has a single test, grouping of tests in a script can be left out from the
test suite specification as a shorthand.

as expected from the feedback. Figure 3.5 shows a Dodona rendering of
the generated feedback for a Python submission whose implementation
of the first function passes all tests. However, the second function has
three tests that fail for different reasons. The first function call returns
the correct result, but also writes the string spam to standard output
(stdout) whereas no output is expected on this output stream. The
second function call returns a list where a tuple was expected. The third
function call should throw an exception, but this does not happen.

Sum of three cubes exercise: input/output testing and custom oracles

Listing 3.4 shows a test suite for an input/output exercise that asks to
read an integer k from standard input and write a solution of the sum
of three cubes problem (x3 + y3 + z3 = k) to standard output as three lines
containing non‐zero integers x, y and z (A. R. Booker 2019). The test
suite has one unit with three test cases whose script only specifies a
single line of input streamed into standard input of the main call and
three expected lines of output printed on standard output. So again the
shorthand structure applies here for units and scripts.

83

Chapter 3. A domain‐specific language for creating programming exercises

0/3 correct: 󰅖 󰅖 󰅖

Divide Recouple 3 Code

󰤻

#1 · 󰅖Wrong Debug

󰅖 recouple(['ACcoST', 'COmmIT', 'LAunCH', 'DEedED'], 3)

stdout

󰜻 Your output 󰈖 Expected output

1 spam
2

return

['ACCOLADE', 'communed', 'STITCHED']

󰅀

#2 · 󰅖Wrong Debug

󰅖 recouple(('ACCOLADE', 'communed', 'STITCHED'), 4)
return

󰜻 Your output 󰈖 Expected output

1 ['ACcoST', 'COmmIT', 'LAunCH', 'DEedED'] 1 ('ACcoST', 'COmmIT', 'LAunCH', 'DEedED')

󰅀

#3 · 󰅖Wrong Debug

󰅖 recouple(['programming', 'computer', 'games'], 5)
exception

󰜻 Your output 󰈖 Expected output

 1 invalid division

󰅀

󰤼

Figure 3.5. Dodona rendering of test results after tested validated a wrong
Python submission for a programming exercise configured with the language‐
agnostic test suite from listing 3.3. All test cases succeed for the implement‐
ation of the function divide, but for different reasons, some test cases fail
for the implementation of the function recouple. An extra badge in the tab
header displays the number of failing test cases in the corresponding unit, or
the number of source code annotations in case of the Code tab (none in this
case).

84

3.3. Illustrative examples

1 - unit: "Sum of three cubes"
2 scripts:
3 - stdin: "3"
4 stdout: "1\n1\n1\n"
5 - stdin: "33"
6 stdout: |
7 8866128975287528
8 -8778405442862239
9 -2736111468807040

10 - stdin: "42"
11 stdout:
12 data: |
13 -80538738812075974
14 80435758145817515
15 12602123297335631
16 oracle: custom_check
17 name: "sum_of_three_cubes"
18 file: "oracle.py"
19 arguments: [42]

Listing 3.4. Language‐agnostic test suite to validate correct behaviour of submis‐
sions for an input/output exercise that asks to read an integer k from standard
input and write a solution of the sum of three cubes problem x3 + y3 + z3 = k to
standard output as three lines containing non‐zero integers x, y and z.

The first two test cases show different yaml alternatives for specifying
multi‐line strings (line 4 and lines 6–9) as the expected value streamed to
standard output. However, specifying a fixed expected output is problem‐
atic for this exercise. The task description does not imply any order in
which the three integers must be listed, so any permutation of the three
integers given by the expected solution for the second test case should
also be validated as a correct solution. Moreover, some values of k have
alternative solutions, irrespective of permutations. For example, another
way to solve the first test case is given by (−5)3 + 43 + 43 = 3 (Sutherland
and A. Booker 2019).

As enumerating all possible solutions (and their permutations) is infeas‐
ible, the specification of the third test case provides a better approach.
tested uses the function sum_of_three_cubes from the Python mod‐
ule oracle.py as a custom oracle to validate the correctness of the
output generated on stdout. tested always passes the actual output and
some metadata, such as the programming language, and the expected
output as the first argument to the oracle. Additionally, extra arguments
taken from the test suite can be passed (in this case there is only one
extra argument: the integer 42).

The custom oracle needs to i) check the output string has the correct

85

Chapter 3. A domain‐specific language for creating programming exercises

format (three lines containing one integer each), ii) parse the three in‐
tegers x, y and z from the output (converting their string representation
into integers) and iii) check the integer expression x3 + y3 + z3 yields the
value of the second argument (42). Passing an extra argument is not
strictly needed here as the custom oracle could also derive the data from
the expected value, using the same procedure as used to derive the data
from the actual value.

3.3.2. Language-agnostic task descriptions

Listing 3.5 shows a language‐agnostic task description for the Recoupling
exercise that was introduced in section 3.3.1. The task description is
specified using Kramdown‐flavored Markdown. It contains Jinja2 place‐
holders ({{code}}) for function names and formal/informal names of
data types, along with MathJax placeholders ($$...$$) for LATEX formu‐
lae. The task description ends with some examples of the expected beha‐
viour when calling the two functions divide and recouple that must
be implemented for this programming exercise. The language‐agnostic
specification of the sample code is denoted using the same specification
of the test suite for the programming exercise in tested‐dsl format or a
reduced version thereof (see listing 3.3).

For the sample code in the template, we use the Jinja2 import facilities to
include the test suite from listing 3.3. tested will automatically generate
an example based on this test suite, while ignoring structural elements
(like the hierarchy).

Starting from a task description template, the tested template engine
can generate language‐specific versions of the task description for all
supported programming languages (figure 3.6). This is done by taking
into account language‐specific conventions (naming, quoting, formal
and informal names and syntax for literals, expressions, and statements)
as specified in the language modules for the supported programming
languages. This dual use between test suites and task description keeps
the language‐specific modules of tested lightweight and guarantees
consistency between the generation of language‐specific tests and de‐
scriptions.

3.4. Evaluation

During the academic year 2023–2024 we started promoting tested with
tested‐dsl as the primary way to author new (language‐agnostic) pro‐

86

3.4. Evaluation

1 Write a function `{{function('divide')}}` that takes two arguments:
i) a word (`{{datatype('text')}}`) and _ii_) the number of
(non-overlapping) groups $$n \in \mathbb{N}_0$$
(`{{datatype('integer')}}`) into which the word must be
divided. If the word passed to the function
`{{function('divide')}}` cannot be divided into $$n$$ groups
that have the same length, an exception must be raised with the
message `invalid division`. Otherwise, the function must return
a {{datatype('list').singular}} (`{{datatype('list')}}`)
containing the $$n$$ groups (`{{datatype('text')}}`) into which
the given word can be divided. All groups need to have the same
length (same number of letters).

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

2

3 Write another function `{{function('recouple')}}` that takes two
arguments: _i_) a {{datatype('sequence').singular}}
(`{{datatype('sequence')}}`) of $$m \in \mathbb{N}_0$$ words
(`{{datatype('text')}}`) and _ii_) the number of
(non-overlapping) groups $$n \in \mathbb{N}_0$$
(`{{datatype('integer')}}`) into which the words must be
divided. If at least one of the words passed to the function
`{{function('recouple')}}` cannot be divided into $$n$$ groups
that have the same length, an exception must be raised with the
message `invalid division`. Otherwise, the function must return
a {{datatype('sequence').singular}} containing the $$n$$ new
words (`{{datatype('text')}}`) obtained when each of the $$m$$
given words is divided into $$n$$ groups that have the same
length, and if each of the $$m$$ corresponding groups is merged
into a new word. The type of the returned
{{datatype('sequence').singular}} (`{{datatype('sequence')}}`)
must correspond to the type of the
{{datatype('sequence').singular}} passed as a first argument to
the function.

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

4

5 ### Example
6

7 ```dsl
8 {% include 'tests.yaml' %}
9 ```

Listing 3.5. Language‐agnostic task description for the Recoupling exercise. The
Kramdown‐flavored Markdown contains Jinja2 placeholders for function
names and both formal and informal names of data types. The task description
ends with some examples that illustrate how the two functions should be used.
The sample code is denoted using the same specification of the test suite for
the programming exercise in tested‐dsl format (listing 3.3).

87

Chapter 3. A domain‐specific language for creating programming exercises

󰌠 Recoupling

Write a function divide that takes two arguments: i) a word (str) and ii) the number of
(non-overlapping) groups (int) into which the word must be divided. If the word
passed to the function divide cannot be divided into groups that have the same length,
an exception must be raised with the message invalid division . Otherwise, the function
must return a list (list) containing the groups (str) into which the given word can be
divided. All groups need to have the same length (same number of letters).

Write another function recouple that takes two arguments: i) a sequence (list or tuple)
of words (str) and ii) the number of (non-overlapping) groups (int) into
which the words must be divided. If at least one of the words passed to the function
recouple cannot be divided into groups that have the same length, an exception must be
raised with the message invalid division . Otherwise, the function must return a
sequence containing the new words (str) obtained when each of the given words is
divided into groups that have the same length, and if each of the corresponding groups
is merged into a new word. The type of the returned sequence (list or tuple) must
correspond to the type of the sequence passed as a first argument to the function.

Example

n ∈ N0

n

n

m ∈ N0 n ∈ N0

n

n m

n m

>>> divide('accost', 3)
['ac', 'co', 'st']
>>> divide('COMMUNED', 4)
['CO', 'MM', 'UN', 'ED']
>>> divide('programming', 5)
Exception: invalid division

>>> recouple(['ACcoST', 'COmmIT', 'LAunCH', 'DEedED'], 3)
['ACCOLADE', 'communed', 'STITCHED']
>>> recouple(('ACCOLADE', 'communed', 'STITCHED'), 4)
('ACcoST', 'COmmIT', 'LAunCH', 'DEedED')
>>> recouple(['programming', 'computer', 'games'], 5)
Exception: invalid division

󰅌

󰌞 Recoupling

Write a function divide that takes two arguments: i) a word (string) and ii) the number of
(non-overlapping) groups (number) into which the word must be divided. If the word
passed to the function divide cannot be divided into groups that have the same length,
an exception must be raised with the message invalid division . Otherwise, the function
must return a list (array) containing the groups (string) into which the given word can
be divided. All groups need to have the same length (same number of letters).

Write another function recouple that takes two arguments: i) a sequence (array) of
 words (string) and ii) the number of (non-overlapping) groups (number)

into which the words must be divided. If at least one of the words passed to the function
recouple cannot be divided into groups that have the same length, an exception must be
raised with the message invalid division . Otherwise, the function must return a
sequence containing the new words (string) obtained when each of the given words
is divided into groups that have the same length, and if each of the corresponding
groups is merged into a new word. The type of the returned sequence (array) must
correspond to the type of the sequence passed as a first argument to the function.

Example

n ∈ N0

n

n

m ∈ N0 n ∈ N0

n

n m

n m

> divide("accost", 3)
["ac", "co", "st"]
> divide("COMMUNED", 4)
["CO", "MM", "UN", "ED"]
> divide("programming", 5)
Error: invalid division

> recouple(["ACcoST", "COmmIT", "LAunCH", "DEedED"], 3)
["ACCOLADE", "communed", "STITCHED"]
> recouple(["ACCOLADE", "communed", "STITCHED"], 4)
["ACcoST", "COmmIT", "LAunCH", "DEedED"]
> recouple(["programming", "computer", "games"], 5)
Error: invalid division

󰅌

Figure 3.6. Dodona rendering the Python (top left) and JavaScript (bottom right)
versions of the task description as generated by the template engine of tested.

88

3.4. Evaluation

Table 3.1. Dodona programming exercises using tested for automated assess‐
ment.

Programming language № of exercises № of submissions
Bash 32 121 011
C 83 652
C# 1 6
Haskell 86 241
Java 120 1493
JavaScript 271 178 011
Kotlin 146 271
Python 385 31 510
Total 1124 333 195

gramming exercises on Dodona (Van Petegem, Maertens et al. 2023). We
clearly documented the process, including guides and reference doc‐
umentation.5 At the time of writing, 1124 programming exercises on
Dodona support automated assessment through tested, with 333 195
assessed student submissions (table 3.1).

In the next sections, we look into a case study where we converted all
JavaScript exercises of a course to use tested‐dsl. This resulted in 72
programming exercises and 22 018 student submissions (these are part
of the total numbers shown in table 3.1).

3.4.1. Expressiveness and ergonomics

To evaluate the expressiveness of tested‐dsl and its applicability in
educational practice, we authored test suites for a collection of 72 pro‐
gramming exercises that were used during the 2023 spring semester in
an introductory course at Ghent University taken by 114 students.6 None
of these exercises is based on input/output, 22 ask to implement one or
more functions and 50 ask to implement one or more classes.

The largest part of the collection consists of all the 66 JavaScript exercises
we designed for this course over the years. These exercises already
supported automated assessment with a test suite designed for a custom
JavaScript‐specific testing framework. To migrate automated assessment
for these exercises to tested, we wrote a script that either converts
their existing JavaScript test suites into a tested‐dsl specification or
reports why this is not possible. Seamless automated conversion was

5https://docs.dodona.be/nl/guides/exercises/ (some documentation is
currently only available in Dutch).

6https://dodona.be/en/courses/2263/

89

https://docs.dodona.be/nl/guides/exercises/
https://dodona.be/en/courses/2263/

Chapter 3. A domain‐specific language for creating programming exercises

helped by the fact that we designed tested according to best practices
we obtained from designing and implementing many language‐specific
testing frameworks for Dodona, and a generic feedback format (json)
that closely follows the structure of tested‐dsl test suites.

All existing test suites for these JavaScript exercises could be transformed
into tested‐dsl: 58 of 66 (88%) into language‐agnostic test suites and 8
of 66 (12%) into JavaScript‐specific test suites. The latter use JavaScript‐
specific language constructs that are not (yet) supported by tested: array
indexing, object indexing, array destructuring assignment, object iden‐
tity checking (=== operator), class constants, spread syntax (... oper‐
ator), and the use of arrow functions as callbacks. The sample solutions
for the programming exercises – assumed to be correct – were used for
testing the test suite migration throughout the process.

Although the above experiment made clear that most, but not all, test
suites for existing JavaScript exercises could be converted into language‐
agnostic test suites for tested, tested‐dsl was expressive enough to
also specify JavaScript‐specific test suites for the remaining exercises.
At least we may conclude from this experiment that for our practice, we
can gradually deprecate language‐specific testing frameworks in favour
of tested. Along the way, converting test suites into a language‐agnostic
tested‐dsl specification also broadens the usability of the programming
exercises across programming languages.

We also added 6 new programming exercises with language‐agnostic
tested‐dsl test suites to the collection, designed from scratch and used
for amidterm test (2 exercises) and for 2 exam sessions (2 exercises each)
during the semester. Our experience in doing so is that direct authoring
of tested‐dsl test suites is ergonomic, either when done by hand or
using a generator script based on a correct solution. Human error is
reduced by using the formal specification for automatic verification that
tested‐dsl test suites are well‐formed and valid. tested performs such
verification while parsing test suites, but this can also be done interact‐
ively while authoring the test suites in an ide. For example, we provide
a VS Code Plugin that automatically applies the json Schema to the
yaml files to catch errors and to provide autocompletion.7 The improved
readability of tested‐dsl test suites further increases productivity and
enhances comfort while authoring programming exercises, especially
with editor support for syntax highlighting and autocompletion.

Of these exercises, 19 were used as mandatory assignments during the
2023 spring semester of the introductory course and 6 for midterm tests

7https://marketplace.visualstudio.com/items?itemName=dodona.
dodona-exercise-plugin

90

https://marketplace.visualstudio.com/items?itemName=dodona.dodona-exercise-plugin
https://marketplace.visualstudio.com/items?itemName=dodona.dodona-exercise-plugin

3.4. Evaluation

and exams. Students could use the remaining exercises from the collec‐
tion for additional practice in preparation for tests and exams. Students
were not restricted in the number of submissions for each exercise. They
received immediate feedback from automated assessment upon each
submission, also after the submission deadline and also during midterm
tests and exams. Students had previous experience in working with
Dodona for solving Java, Python and Bash programming exercises with
automated assessment. But most of them had no prior experience with
the collection of JavaScript exercises, nor with automated assessment
based on the custom JavaScript‐specific testing framework used in previ‐
ous editions of the course.

For each course edition, we make a different selection of mandatory
exercises and we always design new exercises for midterm tests and
exams. This way, students who had to retake the course had no reference
for comparison between the custom JavaScript‐specific testing frame‐
work used in previous course editions and tested using during the 2023
edition. For that reason, we decided not to inform students about us
switching the JavaScript testing framework that for them runs as a hidden
component in the backend of Dodona.

In total, tested automatically assessed 22 018 JavaScript submissions
during the 2023 spring semester of the course. None of the questions we
received from students during the hands‐on sessions for the course or via
Dodonas̓ Q&A module hinted at any issues with automated assessment
or the feedback it generated other than content‐related issues. We also
found no indications of problems in the course evaluation that students
complete some weeks after the end‐of‐semester exams.

3.4.2. Performance

As is the case for software testing in general, the user experience of
educational software testing depends on the performance of test runs
to limit how long students must wait before feedback is reported (Sarsa
et al. 2022). We therefore ran a benchmark using all 72 JavaScript ex‐
ercises mentioned previously to validate the performance of tested.
These exercises have 95 test cases on average, with a minimum of 2
and a maximum of 518. Previously, we showed that the extra flexibility
provided by language‐agnostic testing comes with an acceptable over‐
head when dynamically generating test code for language‐specific test
harnesses (section 2.10.3). Here, we specifically investigated if using
a domain‐specific language for specifying test suites incurs additional
overhead compared to using the json‐formatted test suite specifications

91

Chapter 3. A domain‐specific language for creating programming exercises

introduced in version 1.0 of tested. The latter specifications closely
reflect the internal structure and functionality of the testing framework,
whereas tested‐dsl was designed to make test suite authoring as ergo‐
nomic as possible.

The benchmark was run on a laptop running Linux (NixOS version 24.05)
with 32GiB ram, an Intel i7‐11850Hprocessor, and a 1TiB ssd. No power‐
saving features were active during the benchmark. It turns out that
parsing and processing of tested‐dsl test suites takes 20% less time on
average compared to the original json‐formatted test suites. We believe
this is mainly due to using a more performant yaml parsing library
compared to the Python built‐in json parsing library. However, this
illustrates tested‐dsl does not incur any additional overhead compared
to the original json format. Because the domain‐specific language still
supports all features of tested, we decided to deprecate support for
json‐formatted test suites in favour of tested‐dsl.

Equally important is the total runtime for assessing the submissions
for a programming exercise. This is the time students must wait before
feedback is available. We observed that 75% of all JavaScript exercises
are assessed automatically in less than 725 ms (figure 3.7). On average,
tested spends 225ms parsing and processing a tested‐dsl test suite,
with the remaining time used for generating test code (language‐specific
test harnesses), running test code and checking test results. Due to
additional speedups in the testing framework itself, tested 2.0 is up to
2.8 times faster than tested 1.0 (both using json test suites).8

3.5. Results and contributions

In this section, we discuss tested‐dsl and its impact on authoring test
suites and task descriptions for programming exercises that support
automated assessment. Apart from its application in authoring language‐
agnostic task descriptions, the three main contributions of tested‐dsl
for authoring test suites are in expressing how the requirements of pro‐
gramming exercises must be assessed. Its test suites:

1. share the exact same declarative structure and functionality across
programming languages,

2. bridge between input/output testing (black‐box, weakly typed) and
unit testing (white‐box, strongly typed), and

3. can express the test code in a language‐agnostic way.

8https://github.com/dodona-edu/universal-judge/pull/334

92

https://github.com/dodona-edu/universal-judge/pull/334

3.5. Results and contributions

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400
0

2

4

6

8

10

12

Execution time in milliseconds

№
of

ex
er
ci
se
s

Figure 3.7. Histogram and box plot of the total runtime for automatically as‐
sessing the (correct) sample solutions with tested for all 72 JavaScript exer‐
cises. Half of the programming exercises have their submissions assessed in
the range of 360ms to 725ms, with 75% of the assessments taking less than
725ms.

The first contributionmight be of general interest to the broader software
engineering community, but the last two contributions are especially
relevant for computer science education. In the following subsections,
we discuss the impact of each contribution.

For task descriptions, many of the same benefits apply as for test suites.
Specifically, the application of the domain‐specific language to task de‐
scriptions allows for programming language agnostic representations of
code references: names of constructs (functions, classes, properties, etc.)
and data types (e.g. lists, sets). Additionally, code fragments written in
the abstract language can be automatically converted to code fragments
of the target programming language.

3.5.1. Declarative structure

Most programming languages have one or more unit testing frameworks,
whose structure and functionality are predominantly derived from Small‐
talk s̓ SUnit (Beck 1997). Collectively the latter are known as xUnit (Mesz‐
aros 2007). xUnit frameworks are code‐driven as their test suites express
both the structure and the behaviour of tests in the same programming

93

Chapter 3. A domain‐specific language for creating programming exercises

language as the software under test. Strong coupling to the language of
the software under test is natural as behavioural tests must access its
public interfaces.

In contrast, tested‐dsl separates these two concerns by expressing the
structure of test suites in a declarativeway (in yaml). tested implements
the functionality for processing this structural part of test suites in its core
module, so only a single highly‐optimized implementation is needed for
this shared functionality of unit testing across programming languages.
Functionality that remains language‐dependent is the generation of test
harnesses. But tested splits that across its core module generating
language‐agnostic harnesses and language‐specific modules generating
language‐specific harnesses, to keep the language‐specific modules as
lightweight as possible and to share common functionality.

tested allows specifying language‐specific test suites using tested‐dsl
that share the same structure across programming languages. tested
simply has to copy the language‐specific attributes when generating
language‐specific test harnesses. As an example, listing 3.6 shows a
JavaScript‐specific version of the test suite from listing 3.2. Test suites
guiding automated assessment for the same exercise in other program‐
ming languages supported by tested, only differ in their representation
for statements of the test scripts (expression, statement), expected
values for strongly typed outputs (return, exception) and strongly
typed arguments passed to custom oracles (arguments). The program‐
ming language inwhich these attributes (blue background) are expressed
is specified with the language attribute (line 2) that is inherited across
the hierarchy of the test suite.

A single tested‐dsl test suite can also specify language‐specific altern‐
atives for multiple languages, as opposed to using a separate unit testing
framework for each language, each with their custom version of the test
suite. Listing 3.7 shows an example with Python and JavaScript alternat‐
ives for the same test expression. This gives access to language‐specific
features that are not (yet) supported in the abstract programming lan‐
guage of tested‐dsl or are not (yet) supported by a language‐specific
module of tested. Here, the former is the case for passing anonymous
functions as arguments to functions and converting strings to uppercase.
This example also shows that tested‐dsl test suites can mix language‐
specific (lines 2–4) and language‐agnostic (line 5) sections.

94

3.5. Results and contributions

1 unit: "Cipher"
2 language: "javascript"
3 cases:
4 - script:
5 - statement: "const cipher = new Cipher('ABCD',

'1AX3S1M2PYZ')"↪→

6 - expression: "cipher.grid"
7 return:
8 - ["-", "A", "X", "-"]
9 - ["-", "-", "S", "-"]

10 - ["M", "-", "-", "P"]
11 - ["Y", "Z", "-", "-"]
12 - expression: "cipher.map"
13 return:
14 "Y": "DA"
15 "M": "CA"
16 "P": "CD"
17 "Z": "DB"
18 "S": "BC"
19 "A": "AB"
20 "X": "AC"
21 - expression: "cipher.encode('spam')"
22 return: "BCCDABCA"
23 - expression: "cipher.decode('BCCDABCA')"
24 return: "SPAM"
25 - expression: "cipher.encode('eggs')"
26 exception: "invalid message"
27 - expression: "cipher.decode('BCCDBACA')"
28 exception: "invalid message"
29 - script:
30 # statements and expressions of the second script come here

Listing 3.6. JavaScript‐specific test suite to validate correct behaviour of submis‐
sions that must define the class Cipher, where the shorthand was applied for
test suites having a single unit. The JavaScript‐specific attributes of this test
suite are highlighted in blue.

1 unit: 'Sort words'
2 expression: # language-specific
3 python: "sort_words(['SPAM', 'eggs', 'bacon'], lambda word:

word.upper())"↪→

4 javascript: 'sortWords(["SPAM", "eggs", "bacon"], word =>
word.toUpperCase())'↪→

5 return: ['bacon', 'eggs', 'SPAM'] # language-agnostic

Listing 3.7. tested‐dsl test suite to validate correct behaviour of submissions
that must either define the function sort_words in Python or define the
function sortWords in JavaScript. The Python‐specific sections of this test
suite are marked in green and the JavaScript‐specific sections in blue.

95

Chapter 3. A domain‐specific language for creating programming exercises

3.5.2. Combined input/output and unit testing

The examples in section 3.3 already show the flexibility of tested‐dsl
to specify test suites for both input/output exercises (listing 3.4) and
exercises with fixed internal interfaces (listings 3.2 and 3.3). However,
individual tests can also combine any mix of weakly and strongly typed
input and output channels. For example, an expression calling a function
with arguments, which reads from standard input, accesses main call
arguments and environment variables, writes to standard output and
error, and returns a value. In addition, test cases can combine black‐box
tests for the main call with a test script of white‐box tests for statements
and expressions that can access internal interfaces of the submission.
This unification of test suites combining strongly/weakly typed and black‐
box/white‐box approaches solves a long‐standing problem in educational
software testing.

Fonte et al. (2013) proposed Output Semantic‐Similarity Language (ossl)
as a domain‐specific language to serialize strongly typed data across
weakly typed standard input and output. Although the formal specifica‐
tion of ossl resembles the tested basic types supported by tested‐dsl,
no ossl‐parser was ever published and it was only conceived for use
in language‐agnostic input/output testing. For application in language‐
specific unit testing, tested added the extra layer of advanced types that
are also supported by tested‐dsl. Enstrom et al. (2011) suggest split‐
ting programming exercises with complex tasks over multiple exercises,
each testing a separate subtasks via input/output testing. Compared to
the approach taken by tested‐dsl, this feels like a poor mans̓ version
of white‐box testing. It forces students to reveal internal interfaces via
standard input and output, and at the same time asks authors to design
and maintain alternative instances of an exercise. An accumulation of
extra work, where what we actually seek are ways to reduce the work of
authoring and solving programming exercises (Douce et al. 2005).

acm‐icpc programming contests and derivatives are another area where
input/output exercises are regularly used. These exercises often follow a
specific style, with multiple test cases bundled in a single input stream.
This style dates back from times where judges – as automated software
testing frameworks are commonly called in the context of programming
contests – were restricted to a single execution of the submissions̓ main
function. These platforms are heavily used in classrooms (Wasik et al.
2018; Zinovieva et al. 2021).

Although theacm‐icpc style of testing canbe expressedusing tested‐dsl
test suites, it forces students to implement a main function that loops
over test cases and bundles their output in a single output stream. This

96

3.5. Results and contributions

approach of packing multiple test cases into a single test case further
increases the black‐box nature of testing. Additionally, it may propagate
faults in the implementation of submissions as a failure for one test
case to failures for successive test cases, making it harder to report feed‐
back that easily discerns which individual test cases pass or fail. In
programming contests, limiting feedback to reporting whether all test
cases passed is not a concern.

However, in an educational context, we do strive for rich and fine‐grained
feedback, meaning an automated testing framework designed for con‐
tests is less than ideal. In tested‐dsl, we essentially move the respons‐
ibility for processing multiple test cases from the student to the testing
framework. This is useful for all students, but especially benefits those
with limited programming experience.

3.5.3. Language-agnostic testing

tested‐dsl s̓ declarative structure to organize multiple test cases and
describe individual test cases already enables authoring programming
exercises whose submissions can be automatically assessed across pro‐
gramming languages. The abstract programming language means that
test statements and strongly typed expected outputs can be specified
once for all supported programming languages, eliminating repetition
for each individual language that is a target for the programming exer‐
cise.

The need for language‐agnostic software testing is relatively unique to
programming exercises, where it is also highly relevant to support auto‐
mated assessment. Beyond this educational context, we do not see many
use cases for having a single specification to test multiple implement‐
ations that differ in programming language. Those use cases do exist
(e.g. testing multiple implementations of the same standard), but they
are often limited to input/output testing.

Besides online learning platforms supporting computer science courses
in secondary and higher education, some platforms target self‐learning,
programming contests or recruitment (Hidalgo‐Céspedes 2023). Ex‐
amples include CodeWars9, Edabit10, LeetCode11, CheckIO12, Exercism13
and CodingBat14. As far as we know, tested is the only existing frame‐

9https://www.codewars.com/
10https://edabit.com/
11https://leetcode.com/
12https://checkio.org/
13https://exercism.org/
14https://codingbat.com/

97

https://www.codewars.com/
https://edabit.com/
https://leetcode.com/
https://checkio.org/
https://exercism.org/
https://codingbat.com/

Chapter 3. A domain‐specific language for creating programming exercises

work that bridges unit testing with language‐agnostic testing. Most
other frameworks are either restricted to input/output testing or rely
on general‐purpose unit testing frameworks. The input/output‐based
approach forces students to implement an input/output model in the
main function and test oracles to process weakly typed data, and can
only evaluate the behaviour of submissions as a whole.

Because general‐purpose unit testing frameworks work with language‐
specific test suites, the alternative approach duplicates efforts in specify‐
ing the expected behaviour for a programming exercise to each target
programming language of its submissions. This can be seen in how separ‐
ate test suites are written for each target language in most programming
platforms.

Only Exercism has a mechanism by which some exercises have a single
specification in a generic track that is used to automatically derive language‐
specific instances.15 This system shares its goals with tested‐dsl. How‐
ever, it is far less flexible and ergonomic for authoring programming
exercises, as the generation step is needed each time.

3.6. Conclusions and future work

Version 2.0 of tested introduces tested‐dsl as a domain‐specific lan‐
guage for writing the test suites that underlie automated assessment, and
for writing language‐agnostic task descriptions. We have paid special
attention to performance to ensure that tested‐dsl has no additional
overhead compared to json test suites (in fact, tested‐dsl is 1.2 times
faster than json test suites). tested‐dsl itself, apart from its use in
authoring language‐agnostic task descriptions, has three main contri‐
butions: i) sharing the same declarative structure across programming
languages, ii) bridging the gap between input/output testing and unit test‐
ing, and iii) allowing test code to be expressed in a language‐agnostic way.
The first contribution may be of general interest to the broader software
engineering community, but the last two contributions are particularly
relevant to computer science education.

Our goal is to further develop tested as an educational software test‐
ing framework for authoring different types of programming exercises
across programming languages. This chapter has focused mainly on
dynamic testing, but tested also performs compilation and linting as

15https://github.com/exercism/problem-specifications

98

https://github.com/exercism/problem-specifications

3.6. Conclusions and future work

generic types of static testing that are preconfigured in the language‐
specific modules. One area of future interest is the introduction of a
language‐agnostic interface for static code analysis.

We are currently investigating possible extensions to the abstract lan‐
guage of tested‐dsl, such as operators for testing operator overloading,
string conversion, comments, indexing sequences, indexing mappings,
destructuring, object identity checking, and object equivalence check‐
ing. There is no need to conservatively restrict the abstract language to
features supported by all or most programming languages, as tested
automatically detects and reports features not supported by a specific
programming language or not (yet) implemented by its language mod‐
ule. Support for additional test inputs (file descriptors, environment
variables) and outputs (file descriptors, global scope) is in progress. We
are also investigating native support for pretty printing of nested data
structures to make it easier to detect differences between expected and
actual return values, and data‐driven tests (parameterized tests) to fur‐
ther improve the readability of test suites, support dynamic generation
of test data and boost performance of running tests. Our future roadmap
also includes internationalization of named submission interfaces, dif‐
ferent ways to measure code coverage, and support for hidden units/test
cases that are visible to teachers but remain invisible to students to avoid
gaming – also known as programming to the test (Peveler et al. 2019).

Further enhancements and improvements of tested will be driven by
educational practice, with the creation of new programming exercises
and the conversion of existing exercises to tested‐dsl being a major
driver. Feel free to run tested as a standalone command line tool, in‐
tegrate it into your online learning environments, and let us know about
interesting use cases. We ourselves now routinely rely on tested to
create new programming exercises and to gradually migrate existing ex‐
ercises to port them to other programming languages and to benefit from
the additional features that tested brings. We also switched to tested
when training (secondary school) teachers how to create programming
exercises with automated assessment for Dodona. First of all because
it covers most common cases, is easy to use, and teachers can use the
same framework for educational software testing, regardless of their
target programming language(s). As an open‐source project on GitHub,
we welcome the sharing of unsupported exercise scenarios, bugs and
feature requests documented as issues.16 We also welcome additional
language‐specific modules to support new programming languages.17

16https://github.com/dodona-edu/universal-judge
17https://docs.dodona.be/en/references/tested/

new-programming-language/

99

https://github.com/dodona-edu/universal-judge
https://docs.dodona.be/en/references/tested/new-programming-language/
https://docs.dodona.be/en/references/tested/new-programming-language/

100

Part II.

Scratch

101

102

Chapter 4.

The Scratch programming
environment

In teaching the computer how to think, children embark on
an exploration about how they themselves think.

— Papert,Mindstorms

This chapter is a short introduction to Scratch, both the programming
language and the environment. It also explains how the source code for
Scratch is organized. The main goal is to familiarize the reader with the
Scratch environment. Technical details are given in later chapters where
relevant.

4.1. The Scratch environment

Scratch is a visual programming language and environment (Resnick,
Maloney et al. 2009).1 Visual programming languages let programmers
construct programs by graphically manipulating program elements,
rather than textually (Kelleher and Pausch 2005). A subset of visual
programming languages are block‐based languages, in which programs
consist of blocks that are clicked together, not unlike puzzle pieces or
Lego bricks (Weintrop and Wilensky 2015). Scratch falls into this cat‐
egory: it consists of a set of blocks with different shapes and colours.
Development on it began in 2002, by the Lifelong Kindergarten research
group at the mit Media Lab. Scratch became publicly available in 2007
and has been developed by the Scratch Foundation since 2009. Its target
audience is young learners, ages 8 to 16, although it is most commonly
used for ages 10 to 14. It is awidely used programming language: the 2022
annual report of the Scratch Foundation (Scratch Foundation 2022) states
that there are over 50 million users in the online Scratch community,
with 120 million new projects created in 2022. The official statistics show

1https://scratch.mit.edu

103

https://scratch.mit.edu

Chapter 4. The Scratch programming environment

15

if on edge, bounce

move steps

forever

set rotation style left-right

when this sprite clicked

0.2

next costume

wait seconds

forever

when this sprite clicked

Sprite Parrot x 0 y 0

Size 100 Direction 90

Parrot

Stage

Backdrops

1

SoundsCostumesCode

10move steps

15turn degrees

15turn degrees

0 0go to x: y:

1 0 0glide secs to x: y:

90point in direction

10change x by

0set x to

random positiongo to

1 random positionglide secs to

mouse-pointerpoint towards

Motion
Motion

Looks

Sound

Events

Control

Sensing

Operators

Variables

My Blocks

Settings File Edit Tutorials Join Scratch Sign in

Figure 4.1. The Scratch environment running an example project. The toolbox
with the available blocks is underlined in red, the workspace is underlined in
green, the editors for the sprites and the stage are underlined in blue, and the
canvas is underlined in orange.

that in May 2024, there were about 1.5 million active monthly users,
with about 3.6 million new projects.2 In April 2024, the Scratch team
announced that the billionth project has been created.3 The tiobe in‐
dex for May 2024 ranks it as the seventeenth most used programming
language (TIOBE 2024).

4.1.1. Using the environment and the blocks

Blocks can be dragged from the toolbox on the left side of the integrated
development environment (figure 4.1) to the workspace in the middle
and can be stacked together to form scripts. Blocks are categorized by

2https://scratch.mit.edu/statistics/
3https://twitter.com/scratch/status/1778814544682295394

The tiobe index is
disputed: it is
based on the
number of
reported results in
search
engines (Bunce
2008, 2009;
Sundarram 2022).

104

https://scratch.mit.edu/statistics/
https://twitter.com/scratch/status/1778814544682295394

4.1. The Scratch environment

their subject or goal: Motion, Looks, Sound, Events, Control, Sensing,
Operators, Variables, and My Blocks (not counting extensions). Each
category has its own colour, except for the blocks that handle lists, as
these appear in the Variables category but have a different colour.

Each script starts with a hat block that defines when the script should
execute. Scripts can be started as a result of a user action or when a
certain criterion is met during the execution of a program, for example,
when a clone is started or amessage is broadcast. A commonway to start
scripts is to press the greenflag (), which has two functions: it will first
stop all running threads before starting new threads for all relevant hat
blocks. The red stop button next to the green flag also stops all currently
running scripts. The green flag button has another functionality: when
there are active scripts, the button gets a darker background colour, even
if those scripts were not started by the green flag.

Blocks (or parts of scripts) can also be run independently by clicking
them. This illustrates that Scratch is always live: once a project has been
loaded, the virtual machine is always running. Sprites can be moved or
manipulated by the user at any time, even if scripts are running.

Each script is connected to a sprite. Sprites are objects that are drawn
on the screen. The bottom right corner of the environment contains an
editor for sprites and the background, which is a special sprite called
Stage that is present in every Scratch project. All scripts corresponding
to the selected sprite are shown in the workspace (middle). The canvas
in the top right corner of the environment shows the execution of the
project.

Besides the tab for the blocks (the “code”), there are also tabs for the
costumes and sounds. The costumes are the visual representation of
the sprite. While some blocks control which costume is used, the list of
possible costumes must be prepared in this tab in advance. The sound
tab is similar, but for sounds instead of costumes.

Finally, users can manage the sprites and stage at the bottom right.
Sprites can be added and removed (even all sprites) by the user. Similarly,
the “backdrop” of the stage (which acts as the costume for the stage) can
be modified as well. Note that the stage cannot be removed.

4.1.2. Data types

Scratch has support for three basic data types: strings, booleans, and
numbers (Maloney et al. 2010). A different block shape is used for
booleans (a mix between rectangle and diamond) and strings/numbers

105

Chapter 4. The Scratch programming environment

(round oval). Variables and reporter blocks (which are special blocks
that result in some value) can only be inserted boolean slots if the shapes
match. The string/number slots are less strict: if necessary, Scratch will
coerce the data into the right type. Since the reporter blocks can also
use operators, they fulfil the role of expressions.

In addition, Scratch also supports lists with their own set of blocks to
manipulate them. Lists can only contain strings or numbers; booleans
are cast to strings.

4.1.3. Sprites, the object model

Sprites are the Scratch equivalent to objects (Maloney et al. 2010). As all
scripts belong to a particular sprite, almost all blocks only work for the
current sprite. Apparently, an earlier version of Scratch had cross‐sprite
commands, but users found it confusing. Since Scratch lacks classes and
inheritance, Maloney et al. call it an “object‐based language”.

The strict separation of code between sprites means there is a lot of
work needed to make a set of sprites behave the same way. For example,
a firework might need hundreds of sprites to represent the particles.
Creating copies of the sprites by hand quickly becomes tedious. That is
why Scratch has a clone feature: a “shadow” sprite is created that shares
its code with the original sprite. While the code is shared, the execution
is not: each clone can execute code independently. A clone is not visible
in the sprite overview, only on the canvas.

Variables are normally also limited to the sprite that defined them and
are not visible to other sprites. There is an exception: the variables of
the stage are visible to all sprites and could thus be used for inter‐sprite
communication.

4.1.4. Inter-sprite communication

Broadcasts are the intended way to let sprites communicate with each
other. There are otherways, such as variables (since variables in the stage
are global). However, broadcasts remain the intended way to do inter‐
sprite communication. It is a one‐to‐many broadcasting system (Maloney
et al. 2010): a broadcast (an arbitrary string) is sent globally and might
trigger multiple scripts (even in different sprites).

106

4.2. Organization of the source code

4.1.5. Defining custom blocks with procedures

Scratch allows defining custom blocks, sometimes called procedures.
This allows the user to define blocks that consist of other blocks, similar
to procedures in other languages. Procedures in Scratch can have para‐
meters that can take arguments, which are available as variables to the
blocks of the procedure. Since the custom blocks are procedures and
not functions, they do not have return values.

4.1.6. Concurrency and parallelism

Scratch is a highly concurrent language: every script is akin to a thread
and can run concurrently to other scripts, even within the same sprite.
The chosen concurrency model of Scratch has a few advantages but also
disadvantages, which we discuss in section 7.3.1.

Due to JavaScript s̓ single‐threaded nature (the language in which Scratch
is implemented), the actual execution of a Scratch program will not be
in parallel.

4.2. Organization of the source code

The first public release of Scratch was in May 2007 as a desktop applic‐
ation (figure 4.2), written in Squeak, a Smalltalk implementation. This
version already supported sharing projects by uploading them to the
Scratch website. Scratch 2.0, released in May 2013, was a rewrite provid‐
ing the first “online” version of Scratch (running in the browser). It used
Adobe Flash for the online version and Adobe Air for the downloadable
offline editor.

In January 2019, Scratch 3.0 was released. This version is a complete
rewrite, using web technologies, such as JavaScript, html, and css.
Scratch 3.0 is fully browser‐based but still supports an offline editor us‐
ing Electron.4 Scratch 3.0 consists of a set of independent source code
modules that work together to form the complete Scratch environment.
An overview of the relationships between the modules is shown in fig‐
ure 4.3. Eachmodule is developed independently in a separate repository
on GitHub.

4https://scratch.mit.edu/download

At the time, some
users speculated
that Scratch 3 was
“rushed” since it
was announced in
2017 that support
for Flash would
end in 2021. Work
on Scratch 3,
however, started
in May 2016.

107

https://scratch.mit.edu/download

Chapter 4. The Scratch programming environment

Figure 4.2. The Scratch 1.0 desktop application (top) and Scratch 2.0 offline editor
(bottom).

108

4.2. Organization of the source code

scratch-gui

scratch-l10n scratch-blocks scratch-vm
scratch-render-

fonts
scratch-paint

scratch-storage
scratch-sb1-
converter

scratch-render scratch-audio scratch-parser

scratch-svg-
render

Figure 4.3.Overview of the dependencies between the Scratch repositories (using
their repository name). The repositories that are purely for the hosted instance,
such as thewebsite, account system, and forumare left out. An arrow indicates
a dependency. For example, thescratch-guipackagehas five dependencies.

The most important and relevant modules for this dissertation are:

Scratch Blocks A fork of Google s̓ Blockly (Pasternak et al. 2017), a library
for building block‐based computing interfaces.5

Scratch Virtual Machine The runtime engine behind Scratch and respons‐
ible for running the projects created by the blocks.6

Scratch User Interface A React‐based web application that consists of the
Scratch programming environment. It uses and builds on the other
components.7

Scratch Renderer AWebGL‐based renderer, responsible for rendering
the canvas.8

5https://github.com/scratchfoundation/scratch-blocks
6https://github.com/scratchfoundation/scratch-vm
7https://github.com/scratchfoundation/scratch-gui
8https://github.com/scratchfoundation/scratch-render

109

https://github.com/scratchfoundation/scratch-blocks
https://github.com/scratchfoundation/scratch-vm
https://github.com/scratchfoundation/scratch-gui
https://github.com/scratchfoundation/scratch-render

110

Chapter 5.

A testing framework for Scratch

There does not now, nor will there ever, exist a programming
language in which it is the least bit hard to write bad pro‐
grams.

— Flon, On research in structured programming

Block‐based languages like Scratch are popular tools for introducing
computer science concepts to young learners (Bau et al. 2017; Zhang and
Nouri 2019). The intuitive interface and focus on visuals make Scratch an
engaging and accessible programming environment. Due to this visual
nature, syntactical programming errors are eliminated and students
can quickly create games, stories, or other projects. This approach gives
students a lot of flexibility to express their creativity. However, functional
errors will still occur (Zeller 2009). The process of teaching to code is
often slowed down by the delay in providing feedback on and solutions
to these errors.

When done manually, assessment of submissions for Scratch exercises
is time‐consuming and impractical, especially in large classes, where
educators often lack the time to give individual feedback to each student.
That is why it is important to equip students with tools that can provide
immediate feedback and thus enhance their independent learning skills.
In this chapter, we introduce Itch, a testing framework for Scratch that
can act as an automated assessment tool (Douce et al. 2005).

Itch provides flexible testing capabilities: it supports both static and
dynamic testing of Scratch projects. It also provides facilities to make
common scenarios easy to test, allowing the educators to focus on testing
the interesting parts of an exercise. We also reflect on Itchs̓ use in an
educational context and discuss what testing of Scratch exercises should
look like. On the one hand, Scratch strives to allow maximal creative
expression for students, while on the other hand, testable exercises need
a well‐defined goal and reasonable limits.

111

Chapter 5. A testing framework for Scratch

5.1. Related work

In this section, we look at the few existing testing frameworks for Scratch.
Since they are few and far between, we also consider other tools with
similar aims: helping students with Scratch. We begin by looking at the
linter‐like tools that perform static analysis.

One of the first ones is Hairball (Boe et al. 2013). Hairball analyses the
blocks of a provided Scratch project, with multiple rules and analysers
available. Dr. Scratch (Moreno‐León and Robles 2015) allows analysing
a Scratch project to provide various insights. For example, Dr. Scratch
uses Hairball to assign a “computational thinking score” to the project,
although the creators of Scratch are not a fan of this approach (Resnick
and Rusk 2020), see section 5.6.3. A similar tool is Ninja CodeVillage (Ota
et al. 2016).

QualityHound (Techapalokul and Tilevich 2017) is a linter that detects
code smells like “duplicate code” or “broad variable scope”. In total,
twelve code smells are detected. LitterBox (Fraser et al. 2021) is a newer
linter that shares some goals with QualityHound. For example, it will
also detect code smells. LitterBox supports significantly more patterns
and also finds potential bugs (Frädrich et al. 2020), by looking for code
that seems suspicious (for example, comparing two literal values). Sub‐
sequent research has expanded LitterBox to find “code perfumes” (Ober‐
müller et al. 2021), which provides positive feedback to students, for
example, by noting good use of loops.

LitterBox can also translate code to LeILa, an intermediate language of
the Bastet framework (Stahlbauer, Frädrich et al. 2020). Bastet uses this
intermediate language to enable more traditional and advanced analysis
and verification of Scratch programs. Examples of what the authors
envision are automated test generation, data‐flow analysis, unbounded
model checking on predicate abstraction, and concolic testing.

itch (Johnson 2016) is the first automatic testing framework to the know‐
ledge of the authors. It translates a limited subset of Scratch programs
to Python. itch uses the Scratch say and ask functionality to perform in‐
put/output‐based testing on Scratch projects. Of course, being limited to
input/output, only a subset of the functionality of Scratch can be used.

Whisker (Stahlbauer, Kreis et al. 2019) is a fully automated testing frame‐
work for Scratch, and the most similar to Itch. While manually written
test suites (also in JavaScript) are possible, Whisker focuses on auto‐
mated testing (Deiner, Feldmeier et al. 2023). For example,Whisker (and

Unfortunaly, we
were not aware of
itch when
deciding to name
our testing
framework Itch.

112

5.2. Introduction to Itch

subsequent research) supports property‐based testing, search‐based test‐
ing (Deiner, Frädrich et al. 2020), and model‐based testing (Gotz et al.
2022).

Finally, Scratch Testing Block (Nurue and Gray 2024) is a prototype for a
Scratch extension that provides an “assert” block. It is in aim similar to
Poke (section 5.7): providing testing facilities inside Scratch itself.

Besides Scratch, there are other block‐based languages, for some of
which testing frameworks also exist. Block‐based languages, like Make‐
Code (Ball et al. 2019), that compile to another programming language
(like Python or JavaScript) are less relevant here, as the testing frame‐
works often use the compiled version.

Snap! is another block‐based language (Mönig and Harvey 2024), created
in 2011 by a former member of the Scratch team. It has many features
that are considered too advanced for Scratch, like higher order functions,
prototype‐based programming, nested sprites, and metaprogramming
capabilities. SnapCheck is one testing framework for Snap!, inspired by
Whisker (W. Wang et al. 2021). Another example is CodeMaster (Wan‐
genheim et al. 2018), which also supports AppInventor (a way to create
mobile apps using a block‐based language). However, the actual testing
is more similar to Dr. Scratch: it assigns scores based on a static analysis
of the used blocks.

5.2. Introduction to Itch

Itch is an educational testing framework for Scratch exercises. Educat‐
ors can write test suites (in JavaScript) that evaluate a submission to
determine if the submission correctly implements the requirements in
the problem statement of the exercise. A submission is the code (in
this case the Scratch project) that students submit as the answer to a
programming exercise.

Broadly, Itch provides two approaches to testing: static and dynamic tests.
For the static tests, the project is not run: only the blocks are analysed.
With static tests, the test suite can verify (discussed in section 5.3.2):

• If the students did not change some off‐limit sprites.
• Themetadata of the sprites, which sprites exist, their position, their
size, their costume, etc.

• All kinds of checks on the blocks: only certain blocks were used,
some blocks were not used, the blocks must match a particular
pattern, the number of blocks, and so on.

113

Chapter 5. A testing framework for Scratch

Test results

10change size by

when g key pressed

-10change size by

when s key pressed

Backpack

Sprite Nano x -133 y -54

Size 100 Direction 90

Giga Nano Pico TESTING

Stage

Backdrops

1

SoundsCostumesCode

10move steps

15turn degrees

15turn degrees

-133 -54go to x: y:

1 -133 -54glide secs to x: y:

90point in direction

10change x by

-133set x to

random positiongo to

1 random positionglide secs to

mouse-pointerpoint towards

Motion
Motion

Looks

Sound

Events

Control

Sensing

Operators

Variables

My Blocks

Testing

File Edit Tutorials grow and shrink Share See Project Page scratch-cat

Figure 5.1. The Grow and shrink exercise. A correct implementation of the exer‐
cise for the sprite Nano is seen here.

However, the most flexible option is to use dynamic tests, which only
look at behaviour, not at the implementation. Since these tests require
the Scratch submissions to be run, Itch provides a scheduler that allows
emulating user interaction (section 5.3.3) and other triggers. Itch can
emulate pressing keys on the keyboard, moving the mouse, clicking the
green flag, clicking on sprites, sending broadcasts, and setting variables.
Additionally, Itch can wait some amount of time or for some requirement
to be fulfilled (like a sprite moving to a certain position).

During this execution, Itch will save snapshots containing the complete
state of the virtual machine. After the execution has finished, these
snapshots are available for inspection in the log. Since the complete
state of the virtual machine is saved throughout the execution of the
project, almost anything can be checked. For example, checking if a
sprite moved in response to a key press, or if a sprite moved up and down
and switched costumes throughout the execution.

114

5.3. Test suites

To illustrate Itch with a concrete example, we will use one exercise as
a running example: the Grow and shrink exercise (figure 5.1). In this
exercise, there are three sprites: each sprite must grow if the g key is
pressed andmust shrink if the s key is pressed. To test this exercise, we
design a test suite that will verify the behaviour of the sprites (listing 5.1).
This test suite will:

1. Save the existing size of the sprites.

2. Press the key that we are testing.

3. Verify that the new size of the sprite is larger or smaller than the
previously saved size.

4. Save the new size as the existing size for the next test.

5.3. Test suites

Test suites for Itch are written in JavaScript. A test suite for Itch is split
into three consecutive phases:

1. The before execution phase, which is run before the execution of
the Scratch project.

2. The during execution phase, where the test suite controls the
Scratch project and simulates user interaction.

3. The after execution phase, where tests are run on the log, which
was collected during the previous phase.

All phases are optional: it is perfectly valid to not have a before execution,
or only a before execution, depending on the types of tests that need
to be run. They are implemented with “magic” functions: these have a
fixed signature (name and arguments) and will be called in the relevant
phases (listing 5.2).

Broadly, the tests can also be split according to their type: there are
static tests and dynamic tests. Static tests do not require execution
of the Scratch project. They are generally easier to write and faster to
execute, but are severely limited inwhat they can test. Assessingwhether
a project uses a certain block (e.g. a loop block) somewhere in the project
is typically done with static tests. Assessing whether an existing sprite
(e.g. blocks that are provided in the starter project) was not modified
is also done with static tests. Static tests can be done completely in the
before execution phase.

115

Chapter 5. A testing framework for Scratch

1 function duringExecution(e) {
2 const runtime = e.vm.runtime;
3 // Save the original sizes of the sprites.
4 const oldSize = {
5 "Giga": runtime.getSpriteTargetByName("Giga").size,
6 "Pico": runtime.getSpriteTargetByName("Pico").size,
7 "Nano": runtime.getSpriteTargetByName("Nano").size
8 }
9 e.scheduler

10 // Execute 4 events after each other.
11 .forEach([1, 2, 3, 4], (prev) => {
12 return prev.pressKey('g').log(() => {
13 e.out.group("Test if sprites get bigger", () => {
14 for (const sprite in oldSize) {
15 const newSize =

runtime.getSpriteTargetByName(sprite).size;↪→

16 e.out.test(`${sprite} got bigger`)
17 .expect(newSize > oldSize[sprite])
18 .toBe(true);
19 // Save the new size as the old one.
20 oldSize[sprite] = newSize;
21 }
22 })
23 });
24 }).forEach([1, 2, 3, 4], (prev) => {
25 return prev.pressKey('s').log(() => {
26 e.out.group("Test if sprites get smaller", () => {
27 for (const sprite in oldSize) {
28 const newSize =

runtime.getSpriteTargetByName(sprite).size;↪→

29 e.out.test(`${sprite} got smaller`)
30 .expect(newSize < oldSize[sprite])
31 .toBe(true);
32 oldSize[sprite] = newSize;
33 }
34 })
35 });
36 })
37 .end();
38 }

Listing 5.1. The complete Itch test suite for the Grow and shrink exercise.

116

5.3. Test suites

1 /** @param {Evaluation} e */
2 function beforeExecution(e) {
3 // Tests go here
4 }
5

6 /** @param {Evaluation} e */
7 function duringExecution(e) {
8 // Tests go here
9 }

10

11 /** @param {Evaluation} e */
12 function afterExecution(e) {
13 // Tests go here
14 }

Listing 5.2. A skeleton of a test suite for Itch that shows the three phases. Each
phase is implemented as a separate function that will be called at the appro‐
priate time by Itch. The argument to these functions is an instance of the
Evaluation class, which provides various methods to help with testing, such
as the test structure, assertion functions, etc.

Checking more high‐level goals, such as “Does the sprite move when
clicked?”, is more challenging with static tests. At least, without severely
limiting the accepted solutions. For example, there are multiple ways to
implement a sprite that moves when clicked, and a good behavioural test
needs to accept all implementations. For these kinds of tests, dynamic
tests can be used, which require the project to be executed. Dynamic
tests often require both the during and the after execution phases. In the
during execution phase, user interaction is simulated and the behaviour
is captured. This captured behaviour can then be inspected in the after
execution phase to see if the actual behaviour matches with the required
behaviour.

Testing can also be done in the during execution phase, for example,
after a user action has been performed. While this makes some test
suites easier (like the one in listing 5.1), it does require attention to the
parallel nature of Scratch. If multiple tests are run in parallel, the output
can be garbled.

5.3.1. Structure of a test suite

A test suite consists of a hierarchical structure of groups and tests, which
can be nested. A test is a check on some requirement or property of the
exercise. It can be correct or wrong and can contain feedback for both

117

Chapter 5. A testing framework for Scratch

1 e.group.group('Tests for sprite A', () => {
2 e.group
3 .test('Sprite A does stuff right')
4 .feedback({
5 correct: 'Good job, sprite A does get stuff right!',
6 wrong: 'Oh no, sprite A does not get it right.',
7 })
8 .expect('some value')
9 .toBe('another value');

10 });

Listing 5.3. An example showing how the test suites are structured using groups
and tests.

cases. Additionally, a test also has a name and can include additional
information, such as value comparisons, messages, etc.

Structure is added by grouping the tests. Groups can be nested, so groups
inside groups etc. are possible. While there is no hard limit, we recom‐
mend not going deeper than three levels inmost cases (the user interface
that displays the feedback can also impose limits). Groups are used for
more than just structure. They also support a notion of visibility, with
three modes:

Visible The group is expanded (the group and all its children are visible).

Hidden The group is completely hidden unless one of the tests in the
group fails.

Summary The group is collapsed by default, and a summary is shown
unless one of the tests fails (in which case the group expands).

Groups and tests in the JavaScript test suites are inspired by the Jest
testing framework.1 The two relevant methods, group and test are
available on the Evaluation.group property passed to the test suite.
Listing 5.3 shows an example of this, containing a single test. The double
group.group is not a typo but needed for backward compatibility with
older test suites. The test, aswritten in the example, will always fail, since
it expects the string "some value" to be equal to "another value".
The expect/toBe notation specifically will be familiar to Jest users.

Groups can be given just a name, as in the example, but it is also possible
to provide more structured data. For example, it is possible to link a
group to a certain sprite. This information is also provided in the gener‐
ated feedback, which means the platform responsible for showing the
feedback can show an image of the sprite with the group.

1https://jestjs.io/

Maintainging
backward
compatibility is
one of the
downsides of
using software in
production.

118

https://jestjs.io/

5.3. Test suites

More details on how this structure is reflected in the generated feedback
can be found in section 5.5. Other possible metadata includes the visib‐
ility, a summary (used if the groups̓ visibility is set to summary), some
tags (which allows tagging groups with arbitrary strings), and an option
to ignore wrong tests. This last option means that if a test fails, it will be
ignored completely and will not be outputted in the generated feedback.
This can be useful in cases where there are multiple possibilities: this
allows trying each possibility until a passed test is found.

5.3.2. Before execution

Thebefore executionphase allows for executing static tests. Itch provides
access to representations of two projects: the submission, created by
the students, and the starter project, which is the project the students
started with.

Access to both projects provides an easy way to assess whether the stu‐
dents modified some sprites or blocks in their submission. Itch provides
helpers to ensure that students only modified certain sprites, or only
certain code within sprites. While this does limit the students in their
ability to creatively modify the project, it makes behavioural tests for
complex projects easier. By limiting where the students are allowed to
modify blocks, later tests can rely on certain functionality or sprites
being available and working. For example, if the project contains blocks
that check if a sprite touches another sprite, these can be relied on.

This functionality of checking a set of predefined blocks and sprites
is exposed with the function Itch.checkPredefinedBlocks to test
suite authors. For example:

1 Itch.checkPredefinedBlocks({
2 spriteConfig: {
3 SpriteA: script(whenIReceive('Start'), setEffectTo('ghost',

0)),↪→

4 SpriteB: {
5 pattern: script(whenIReceive('Start'), setEffectTo('ghost',

0)),↪→

6 allowedBlocks: [forever()],
7 allowAdditionalScripts: true,
8 },
9 },

10 debug: false,
11 }, e);

The example above contains tests for two sprites. All other sprites must
be unchanged.

119

Chapter 5. A testing framework for Scratch

when I receive Start

set ghost effect to 0

change size by 3

change y by -2

repeat 15

change ghost effect by 5

change size by 3

repeat 15

hide

(a) A script in Scratch.

1 script(
2 whenIReceive('Start'),
3 setEffectTo('ghost', 0),
4 repeat(15, script(
5 changeSizeBy(3),
6 changeYBy(-2)
7)),
8 repeat(20,script(
9 changeEffectBy('ghost', 5),

10 changeSizeBy(3)
11)),
12 hide(),
13);

(b) The equivalent in JavaScript.

Listing 5.4. An example of how a Scratch program can be represented using the
abstractions provided by Itch.

For the sprite SpriteA, students are allowed to change, add, or re‐
move blocks in the script starting with the two blocks when I receive Start and
set ghost effect to 0 . Students are allowed to change blocks after these two pre‐
defined blocks.

The second sprite, SpriteB, allowsmodifications to scripts starting with
the same blocks, but it uses the full version of the config object. With the
full version, it is also possible to specify if additional scripts are allowed
and limit the blocks they can use. In this example, only the forever block
can be used (so this is not a useful test). Finally, additional scripts (thus
new ones created by the students) are also allowed. These are free of
restrictions: the check for allowed blocks does not apply.

Itch also includes an abstraction to represent Scratch blocks in JavaScript,
as used in the example above. For each Scratch block, a corresponding
function exists (see an example in listing 5.4).

The functions representing blocks can also be used to construct block
patterns. Two additional functions are provided for patterns. The first
is anything(), which can be used in any location (as a block or value)
and matches any block or value. The reverse, nothing(), matches no

120

5.3. Test suites

1 /** @param {Evaluation} e */
2 function duringExecution(e) {
3 e.scheduler
4 .greenFlag(true)
5 .wait(800)
6 .pressKey('s')
7 .end();
8 }

Listing 5.5. An example of the during execution phase where the scheduler is
used to first press the green flag, wait 800ms, press the s key, and finally
end execution.

block or value. It can be useful to ensure that a script terminates (i.e. that
there are no more blocks afterwards). Additionally, an array of blocks
or patterns can also be used in most places. This represents a choice: it
will match any of the patterns in the array.

For example, consider the following pattern:

1 repeat([15, 30], script(changeSizeBy(any()), never()))

It will match a
repeat

block that repeats 15 or 30 times, with a body with

exactly one block, change size by , whose argument can be anything.

Since scripts forma tree of blocks, there are also helpers tomatch and test
against a script of blocks. This supports error messages for each block
(meaning they each show up as a failed assertion in the feedback).

5.3.3. During execution

The during execution phase is actually run just before the project is ex‐
ecutedby Itch. Themainpurpose of this phase is to use thee.scheduler
(an instance of the Scheduler class) to schedule the execution of the
project. Using the scheduler, the test suite must specify how the project
should be executed. This includes starting execution, stopping execu‐
tion, manipulating the virtual machine, and simulating user interaction,
like clicking, key presses, input, and so on. Listing 5.5 shows a minimal
example of a schedule where the green flag is pressed, 800ms must pass,
and finally the s key is pressed.

The scheduler receives a set of actions to perform. Each next action is ex‐
ecuted after the previous one has been scheduled or completed. Because
Scratch is a highly concurrent language, the scheduler also supports this.

121

Chapter 5. A testing framework for Scratch

First, most actions support a synchronous and asynchronous variant.
In the asynchronous variant, the action is executed and immediately
finished. For example, the action to press the green flag is almost in‐
stant: the green flag is pressed in the virtual machine, and the action is
complete.

The synchronous actions will only finish after all activated scripts in
Scratch have terminated. For example, the action to press the green flag
will wait until all scripts with the hat block when flag clicked are
done executing. Of course, there are scenarios where this is not possible.
If one of the scripts contains an infinite loop, the next scheduled action
would never be performed, as the script will never end.

Since the project that is run comes from students with unknown code,
synchronous actions also support a timeout. After this time has passed,
a failed assertion will be added to the generated feedback, and the sched‐
uler will continue.

Every action in the scheduler returns the last scheduled action: this
return value can be used to schedule the next action after the previous
one. To create a non‐linear schedule (e.g. multiple actions are performed
simultaneously), there are a few options. First, the return value of one of
the previous actions can be used multiple times to schedule new actions.
All of these will be run in parallel.

Another option is to use the method forEach: this is an implementation
of the “fold” function on the scheduler events. By deciding what action
is used as the accumulator, either a linear (by returning the new action)
or non‐linear schedule (by returning the existing action) can be created.
Figure 5.2 shows an example of this. By returning the new action, each
action L1‐4 will be performed in succession. By returning the original
action, the N1‐4 actions will all be scheduled at the same time. Since
both L1 and N1 are scheduled on the same starting action S, they will
also run in parallel.

While most actions are equivalent to their counter‐parts in Scratch (like
clicking a sprite, pressing a key, etc.), the wait action has more features.
In addition to waiting a set amount of time (like in the example), the
wait action can also wait on the fulfillment of a certain condition. The
wait condition can be either waiting on a certain broadcast being sent,
or a sprite fulfilling some condition. The possible sprite conditions are
moving, reaching a certain position, touching another sprite, no longer
touching another sprite, touching the edge, and touching the mouse.
These conditions are added as needed, so with use, we envision more
conditions being added.

122

5.3. Test suites

1 const s = e.scheduler.wait(500);
2

3 // Schedule actions L1-4
4 s.forEach([1, 2, 3, 4], (p) => {
5 return p.wait(500);
6 });
7

8 // Schedule actions N1-4
9 s.forEach([1, 2, 3, 4], (p) => {

10 p.wait(500);
11 return p;
12 });

0 s 0.5 s 1 s 1.5 s 2 s

S

L1 L2 L3 L4

N1

N2

N3

N4

Figure 5.2. The code for the scheduler (left) and the resulting schedule of actions
(right). The start of an action is shown with a circle. After the start action S,
the L and N actions are scheduled at the same time. However, the L actions
return the new action in the function, meaning L1‐4 will run sequentially.
The code for the N actions returns the original action, meaning N1‐4 will run
concurrently. Since both N1 and L1 are scheduled on the same action S, the
actions L1 and N1‐4 will all run concurrently.

A final special action is the log action. This action saves the current state
in the log (section 5.3.4) and executes a custom function at that time. This
action is intended tomark certain events in the log but can also be used to
execute a test during the execution of the project, instead of beforehand
or afterwards. While the test is executed during the execution, it also has
access to snapshots and events that have already taken place.

5.3.4. After execution

Itch uses the scheduler from the during execution phase to execute the
submission. During the execution, a log is constructed of the execution.
This is done by hand (using the log scheduler action) and automatically
at interesting points. The log consists of snapshots (which are taken
every time something changes in the virtual machine) and events (which
denote interesting snapshots). For example, every action in the scheduler
is saved as an event, meaning there is a snapshot before the action and
after the action has been completed.

Returning to theGrow and shrink exercise, listing 5.6 shows an alternative
test suite (compared to listing 5.1). In the during execution phase, only
the key presses are scheduled. Afterwards, in the after execution phase,

123

Chapter 5. A testing framework for Scratch

1 function duringExecution(e) {
2 // Schedule pressing each key four times in succession.
3 e.scheduler
4 .forEach([1, 2, 3, 4], (prev) => prev.pressKey('g'))
5 .forEach([1, 2, 3, 4], (prev) => prev.pressKey('s'))
6 .end();
7 }
8

9 function afterExecution(e) {
10 const sprites = ["Giga", "Pico", "Nano"];
11

12 // Get the events for the g key presses.
13 const gPresses = e.log.events.filter((e) => e.type === 'key' &&

e.data.key === 'g');↪→

14 for (const event of gPresses) {
15 e.out.group("Test if sprites get bigger", () => {
16 for (const name of sprites) {
17 // Get the sprite from the snapshot before the key press.
18 const before = event.previous.sprite(name);
19 // Get the sprite from the snapshot after the key press.
20 const after = event.next.sprite(name);
21

22 e.out.test(`${name} got bigger`)
23 .expect(after.size > before.size)
24 .toBe(true);
25 }
26 });
27 }
28

29 const sPresses = e.log.events.filter((e) => e.type === 'key' &&
e.data.key === 's');↪→

30 for (const event of sPresses) {
31 e.out.group("Test if sprites get smaller", () => {
32 for (const name of sprites) {
33 const before = event.previous.sprite(name);
34 const after = event.next.sprite(name);
35

36 e.out.test(`${name} got smaller`)
37 .expect(after.size < before.size)
38 .toBe(true);
39 }
40 });
41 }
42 }

Listing 5.6. Alternative test suite for the Grow and shrink exercise. In contrast to
listing 5.1, this test suite only schedules the key presses in the during execution
phase. All tests are performed in the after execution phase using the log.

124

5.4. Evaluating projects

the log is used to perform the tests. For each key press, the corresponding
event in the log is looked up. Each of these events provides before and
after snapshots, which are then used to determine if sprites correctly
change in size.

5.4. Evaluating projects

The evaluation of a submission goes through the following process:

1. The submission, the starter project, and the test suite are made
available.

2. Itch loads both projects, and runs the before execution phase.
While the starter project is available in all phases, it is only in‐
tended to be used in the before execution phase.

3. If the before execution phase does not result in an error, Itch ini‐
tializes the virtual machine, inserts hooks for the log, and loads
the submission into the virtual machine.

4. The during execution phase is run, and the scheduled actions are
read from the test suite. The during execution phase is used to
create a schedule of user actions using the scheduler. It does not
run the schedule itself.

5. Itch starts the virtual machine and executes the scheduled actions.
While executing, the logs are captured.

6. If the execution does not result in an error, Itch shuts down the
virtual machine, and runs the after execution phase.

7. All feedback is sent to the output. The output is a callback function
that can be provided when starting Itch, or the default function is
used, which prints the feedback on standard output.

Scratch 3.0 is built using browser technologies and has to be run in the
browser. While the virtual machine is pure JavaScript and could thus
run without a browser, the renderer is not: it uses the html canvas
andWebGL technologies. The renderer is used to calculate things like
sprite collisions and checking if sprites touch certain colours. While it
is theoretically possible to create a renderer that does not useWebGL,
this would be a big undertaking and imply a big maintenance burden.
The re‐implemented renderer will have to be kept up to date with the
upstream one and replicate all behaviour exactly.

125

Chapter 5. A testing framework for Scratch

1 export interface EvalConfig {
2 /** The submission sb3 data. */
3 submission: ArrayBuffer;
4 /** The starter project sb3 file. */
5 template: ArrayBuffer;
6 /** If the output should be partial or full. */
7 fullFormat: boolean;
8 /* The canvas for the renderer. */
9 canvas: HTMLCanvasElement;

10 /** The test suite to use. */
11 testplan: string | TestplanSource;
12 /** Callback for the results. */
13 callback: OutputHandler;
14 /** The language of the exercise. */
15 language: string;
16 }
17

18 /** Run the judge. */
19 export async function run(config: EvalConfig): Promise<void>;

Listing 5.7. The exposed interface to run Itch. It consists of one function and a
configuration object.

Itch consists of two JavaScript packages, which is a reflection of the two
ways to run Itch:

• As a library in the browser. This is useful for contexts where there
already is a browser, e.g. running Itch along the Scratch environ‐
ment on the device of the student for client‐side testing. This is
implemented by the first JavaScript package, the core package.

• As a command line tool. This is for cases where Itch runs as a
service in the backend, e.g. to check submissions after students
are done. This is implemented in the second JavaScript package,
the runner package. This package wraps around the core package
to launch the browser instance and load the various dependencies
(it thus runs the core package, which is where it gets its name).

5.4.1. Running Itch as a library

When running Itch as a library, the core package must be loaded into
the browser, in addition to having the Scratch dependencies (the virtual
machine, etc.) available. The exposed interface to run Itch is limited
to one function and a configuration object (listing 5.7). Most of the
options are self‐explanatory, and the output format option is explained
in section 5.5.

126

5.4. Evaluating projects

load

load projects
projects

beforeExecution
feedback

duringExecution
schedule

run(schedule)
log

afterExecution
feedback

run(config)

feedback

evaluate
launch

feedback

Itch runner Puppeteer Itch core Test suite Scratch VM

Figure 5.3. Sequence diagram showing the process of evaluating a project with
Itch. When run as a library, there is no Itch core or Puppeteer.

5.4.2. Running Itch as a command line tool

When there is no existing browser instance available, Itch provides a
command line interface. In this mode, Itch will run a headless browser,
load the projects and test suites, run the judge, and finally collect the
results from the browser.

Figure 5.3 shows the complete process. First, the runnerpackage launches
a Puppeteer instance (the headless browser). When ready, the various
dependencies are loaded into the Puppeteer instance (these are the Itch
core package, the Scratch dependencies, the test suite, the submission,
and the starter project). The runner package will then run a special
script that calls Itch as it would be used as a library: the run(config)
function is called. Then, the same process happens as when using Itch

A headless
browser is a full
browser, but
without user
interface.

127

Chapter 5. A testing framework for Scratch

as a library. First, the projects (submission and starter) are parsed. The
phases are then executed, with the before and during execution phase
going first. The during execution phase results in a schedule, which is
then run. The virtual machine is started and runs the projects with the
scheduled actions. Finally, the after execution phase is run, with the log
from the previous phase.

5.4.3. Performance considerations

Reducing the time students spend waiting on feedback is essential for
providing a good user experience with software testing, especially in
educational software testing (Sarsa et al. 2022). One difficulty in providing
fast feedback on Scratch code is that blocks that wait are commonly used.
However, these wait times pose a hard lower limit on the duration of the
evaluation of a Scratch project. For example, if a project has a wait block
of 2 seconds, the evaluation time of that project can never be less than
2 seconds (and will be higher in practice, since the whole evaluation
process also adds overhead). Such wait blocks can quickly add up.

As a solution for this problem, Itch provides test suites with the ability
to set an “acceleration factor”: this factor indicates the speedup for all
time‐based data, both in the project and in the test suite. For example, if
the acceleration factor is 2, the wait time in wait blocks will be halved, as
will wait times in the scheduler. The acceleration factor can, however, be
flaky with high values: we do not recommend a factor higher than 5. If it
is expected that, for example, wait blocks are used for synchronization of
two sprites, the acceleration factor can cause issues, as it does not speed
up general execution. For example, if a wait block has a value timed to
wait as long as the execution of another script with five blocks takes, the
acceleration factor will cause the wait block to stop waiting early.

Itch also provides the test suite with the possibility to enable Scratchs̓
built‐in turbo mode. In this mode, execution is done faster (how much
depends on the project). Together with the acceleration factor, these
techniques can significantly speed up the evaluation.

5.5. Format of the generated feedback

The format of the generated feedback is in structure similar to the struc‐
ture of the tests in the test suite (section 2.6.1). The three levels of the
feedback are:

128

5.6. Itch in practice

1 {"command": "start-judgement", "version": 2}
2 {"command": "start-group", "name": "Check on existing code",

"visibility": "summary"}↪→

3 {"command": "start-group", "name": "Stage", "sprite": "Stage",
"visibility": "summary"}↪→

4 {"command": "start-test", "name": "Sprite exists"}
5 {"command": "close-test", "feedback": "The sprite exists",

"status": "correct"}↪→

6 {"command": "close-group"}
7 {"command": "close-group"}
8 {"command": "close-judgement"}

Listing 5.8. Example of the output generated by Itch for a test suite with two
nested groups, with one test. Note the similarity to listing 2.4.

1. Judgement: the top‐level object of the feedback.

2. Group: contains one or more tests or subgroups (equivalent to a
group from the test suite). Each group has the same options as in
the test suite (e.g. for its visibility, a linked sprite).

3. Test: one condition or requirement that is evaluated (equivalent to
a test from the test suite).

Itch uses a callback function to process feedback and has two modes.
In partial mode, the callback is called whenever feedback is available.
Full mode means all feedback is collected and the callback is called once
with the collected feedback.

When running Itch on the command line, a default callback function is
used. This default will send all feedback to standard output in a format
similar to the Dodona feedback format used by tested (section 2.8.3).
The feedback is printed as newline‐delimited json,meaning jsonobjects
are separated by a newline, and each line is a valid jsonobject. Listing 5.8
gives an example of this format. In partial mode, the structure of the
feedback is indicated by commands, with start commands to begin a
new level in the hierarchy andclose commands to finish a level. The full
mode is similar, but there is only a single big json object that represents
a nested tree of the same feedback.

5.6. Itch in practice

In this section, we discuss the use of Itch in educational practice and
discuss insights from creating test suites for Scratch exercises.

129

Chapter 5. A testing framework for Scratch

5.6.1. Capabilities of the testing framework

The initial development of Itch used a set of 13 Scratch exercises from
the 2017 edition of the Flemish Programming Contest (Vlaamse Program‐
meerwedstrijd). The Scratch exercises were used in a special category
for students aged 10 to 12. This category was a one‐time event organ‐
ized by the local organizer as a side‐event for the Programming Contest,
which normally focuses on text‐based programming languages. It is
worth mentioning that this event used human judges to assess whether
the children had successfully completed an assignment. An example
of one such exercise is given in appendix A. This was the case as there
were no Scratch testing frameworks at the time that could automate this
assessment: as a result, the exercises were not created with automated
assessment in mind.

These 13 exercises were used as a reference for the initial feature set
and capabilities of Itch. The exercises can be classified into five groups,
depending on their contents:

Speaking Sprites speak, think, or ask questions (five exercises).

Moving Sprites move around (three exercises).

Costumes Sprites change costumes, often to emulate animation (three
exercises).

Games Interactive games that require user input (one exercise).

Drawing The Pen extension is used to draw on the canvas (three exer‐
cises).

Note that the exercises do not sum up to 13: two exercises are both in
the moving and costumes category, since they do both.

For 12 of the 13 exercises, an Itch test suitewas created that tested the sub‐
missions sufficiently that it would have been usable in the programming
contest. The remaining exercise was not testable due to its open‐ended
nature. The task description is, in summary, “draw a house”. Which
leads to a vast variety of houses as solutions. Besides introducing some
computer vision framework to detect houses (which would be technically
possible in Itch), this is not easily testable.

These exercises were all tested with dynamic tests, meaning they test
the behaviour of the submission. The exercises of CodeCosmos (which
are discussed in section 5.6.2) are often longer interactive games. Due
to their complex nature, static testing was sometimes needed (which is
discussed in section 5.6.4).

130

5.6. Itch in practice

5.6.2. Itch in educational practice

The use of Itch in educational practice has done mainly with our com‐
mercial partner, CodeCosmos. CodeCosmos provides the platform in
which Itch is integrated. The platform provides a variety of organiza‐
tional tools, like classroommanagement. It has its own hosted instance
of the Scratch environment (similar to the mit‐hosted instance). This
instance has been modified to integrate with Itch.

On the platform, Itch is run server‐side by a dedicated service. The choice
for server‐side testing versus client‐side testing was mainly motivated by
making sure that students could not cheat by modifying the test suites or
the results. The platform will periodically (or when a button is pressed)
send the current version of the submission to the server. The backend
will then look up the test suite and starter project and send these to the
Itch service. After testing has been completed, the results are returned
to the platform where they are displayed to the students in an additional,
custom tab in the Scratch environment.

There are two different ways in which the CodeCosmos programming
exercises are used. The first is as part of a “teaching pack”, which is
bought and used by schools. These packs implement the “attainment
descriptors”, which are documents that describe the learning objectives
of the lessons and what skills students should possess after taking the
courses. Here, the teaching pack provides a full learning path for the
students, with suitable exercises at each stage of the process. The second
way is as an extracurricular activity, where students either follow weekly
lessons or join a “coding camp” for a few weeks in the summer. In both
cases, many of the same exercises are used, but the context in which
they are used differs.

In total, there are 139 exercises with an Itch test suite. In the period from
March 3rd, 2023 until March 26th, 2024 (328 days), Itch evaluated 28 144
submissions. Of these submissions, 2713 (9.64%) are evaluated as being
correct, which means 90.36% of evaluated submissions are incorrect.
This is in linewith our expectations: we allow students to submit asmuch
as they want (and even automatically submit every so often) until the
submission is correct. This also allows for collecting information about
the trajectory of students while solving an exercise but also provides
more data for analysing the growth of students throughout a course.
Providing insights from this data to educators is one area of future work
that is planned by CodeCosmos.

The submissions were made by 6496 unique users, with an average of
4.33 submissions per user. The submissions have an average test count

Called eindtermen
in Dutch.

131

Chapter 5. A testing framework for Scratch

of 158, (the exercises have a number of tests that range from a minimum
of 2 and a maximum of 1292).

Most of these exercises were conceived before introducing Itch, meaning
Itch is capable of evaluating exercises as typically used by CodeCosmos.
The biggest change we made to the exercises was splitting the levels of
the exercises into different Scratch projects. However, coming up with a
test suite for all of these exercises was a challenge, which is discussed
next.

5.6.3. How to assess Scratch projects

The creators of Scratch have a well‐known vision on how they intend
Scratch to be used. The Scratch teamprefers not to use assignment‐based
learning (Resnick and Rusk 2020). As a specific example of this, they
particularly do not support strict static tests on exercises. For example,
Resnick and Rusk state:

Too often, researchers and educators are adopting auto‐
mated assessment tools that evaluate student programming
projects only by analysing the code, without considering the
project goals, content, design, interface, usability, or docu‐
mentation. For example, many are using an online Scratch
assessment tool that gives students a “computational thinking
score” based on the assumption that code with more types of
programming blocks is an indication of more advanced com‐
putational thinking. This form of assessment doesnʼt take
into consideration what the student s̓ program is intended to
do, how well it accomplishes the student s̓ goals, whether the
code works as intended, whether people are able to interact
with it, or how the student s̓ thinking develops over a series
of projects.

At the same time, using linters or other static analysis tools to detect code
smells is considered beneficial for students (Hermans and Aivaloglou
2016). However, in Itch, static analysis can also be used for automatic as‐
sessment by writing static tests. While we share the sentiment of Resnick
and Rusk, our experience with Scratch exercises and our collaboration
with CodeCosmos has shown that such tests are often used, despite their
disadvantages. There are a few factors that contribute to this:

• Exercises (especially in Scratch) that were not created with test‐
ability in mind are hard to properly test without resorting to static
analysis of the code.

They are probably
talking about Dr.
Scratch here.

132

5.6. Itch in practice

• Scratch projects, especially complex ones, are technically chal‐
lenging to test within an acceptable time frame. We cannot spend
minutes evaluating a single submission, as feedbackmust beprovided
quickly to students (Sarsa et al. 2022).

• Educatorswant simplemetrics to easily see if students havemastered
some concept. For example, determining if a student has mastered
the concepts of loops (or repetition in general) is challenging to
do automatically. With a large number of students and time con‐
straints, educators fall back on analysing blocks as a proxy for
mastery (Combéfis 2022).

This does not mean that static tests are of no use: with good and thought‐
ful static tests, an educator (and student) can be fairly certain that a
submission marked as correct is effectively correct. This can guide the
educator to spendmore time on submissionswhere their attention is war‐
ranted. Similarly, a submission marked as wrong can also help pinpoint
the problem to the student, without intervention from the educator.

However, as so eloquently stated by Edsger Dijkstra, “Testing shows the
presence, not the absence of bugs”. Students might have solved the ex‐
ercise in creative or innovative ways, which static tests fail to detect.
Similarly, theymight have fooled the static tests intomarking the submis‐
sion as correct, even though it is not. Therefore, we do not recommend
using static tests to automatically grade submissions, at least not without
verifying the results.

5.6.4. Creating test suites for Scratch exercises

Itch does not use the same programming language for the test suites
as the programming language of a submission: test suites for Scratch
exercises are written in JavaScript. This has advantages, as JavaScript is
a general‐purpose programming language, while Scratch is much more
limited, but it also has disadvantages.

It is not uncommon for educators that use or create Scratch exercises
to have no formal computer science background, nor experience with
programming besides Scratch (H. Kim et al. 2012; Oliveira et al. 2019).
This is also the case at CodeCosmos, where teachers with an educational
background design and create the exercises. For the existing exercises,
the educators designed the exercise and implemented the Scratch parts,
while others (like the author of this dissertation) implemented the test
suites. However, it is our experience that authoring exercises is faster if

Doing the same in
Scratch would be
much less
ergonomic then
doing it in
JavaScript.

133

Chapter 5. A testing framework for Scratch

the people designing the exercise have knowledge of the testing frame‐
work and implement the test suite themselves. In section 5.7, we explore
an experiment showing what a testing framework for Scratch with test
suites in Scratch may look like.

5.7. Writing test suites in Scratch

Asmentioned in the previous subsection, creating test suites in JavaScript
for Scratch exercises can be challenging for educators without computer
science background or experience. To fill this gap, we have developed
Poke: a prototype of a testing framework for Scratch implemented in
Scratch itself. This means that test suites are written with Scratch blocks,
tests are executed in the Scratch environment, and the results are also
shown in the Scratch environment.

For this prototype, our focus was twofold: “Is it possible to create a
testing framework for Scratch in Scratch?” and “If possible, which testing
facilities should be present?”. The answer to the first question is yes, and
the remainder of this section discusses the details of Poke, along with
answers for the second question. These considerations include what
blocks to provide, how tests should be run, etc.

5.7.1. Introduction to Poke

The user‐facing part of the Poke software testing framework consists of
three parts (figure 5.4):

• An additional button next to the green flag and stop button, which
will run the tests.

• An extension to provide a set of blocks to write tests with.

• An additional tab in the Scratch environment that shows the test
results once run.

5.7.2. The Poke extension

Poke provides five categories of blocks: a hat block (which starts the
tests if the button is clicked), feedback blocks, user interaction blocks,
observation blocks, and blocks to execute code in another sprite.

134

5.7. Writing test suites in Scratch

Test results

click

when clicked

10change size by

when clicked

Backpack

Sprite Sprite1 x -92 y 43

Size 110 Direction 90

Sprite1

Stage

Backdrops

1

SoundsCostumesCode

when clicked

 assert named

 correct:

 wrong:

5wait until or seconds

 test group

click

press space key

press space key and wait

Testing
Motion

Looks

Sound

Events

Control

Sensing

Operators

Variables

My Blocks

Testing

File Edit Tutorials Scratch Project Share See Project Page scratch-cat

Figure 5.4. The Scratch environment with the added Poke elements: the addi‐
tional button next to green flag and stop buttons to start the tests, the additional
tab to show test results, and the extension that provides the Poke blocks.

135

Chapter 5. A testing framework for Scratch

Feedback blocks

test group name

The structure of a test suite in Poke is identical to the structure in Itch
(section 5.3.1): a test suite consists of groups, which can contain tests or
other groups. The block for creating groups is a C block that takes the
name of the group as an argument. The body of the block outputs its test
results in the group.

assert named feedback correct: feedback wrong: feedback

For generating test results, there are three blocks, the main of which is
the assertion block. It takes a boolean value and a name. The name is
shown in the output, together with a status depending on the value of
the boolean block. There are also the correct and wrong blocks, which
act as a test that always passes or always fails respectively.

wait until or seconds

A special block is the wait until or timeout block. This block will wait
until the condition evaluates to true or the specified number of seconds
has passed. If the condition evaluates to true within the time limit, the
first slot is used, which will often contain a correct: block. Otherwise,
the second slot is used, which will often contain a wrong: block. The
two slots can also contain other blocks.

User interaction blocks

click click Sprite click Sprite and wait

press space key press space key and wait

movemouse to x: y: answer answer text

The user interaction blocks will simulate user interaction, similar to the
scheduler in Itch (section 5.3.3). Currently, there are blocks to click the
green flag, click a sprite, move the mouse, press a key, and answer a

136

5.7. Writing test suites in Scratch

question. The block to click a sprite and the block to press a key also
have a synchronous variant, which will wait until all activated scripts
have finished, again similar to the synchronous/asynchronous actions in
the scheduler from Itch.

Observation blocks

snapshot property of Sprite in snapshot property in snapshot

The observation blocks are similar to sensing blocks from Scratch, as
they allow the tests to save and query the environment. A special sens‐
ing block (which also acts as a variable) reflects the current state of the
virtual machine. Test code can then save this state into a variable, mak‐
ing it available later. Two more reporter blocks (one for sprite‐specific
properties and one for the stage) allow querying specific properties (of
specific sprites) from the saved state (or the current state).

Executing blocks in another sprite

with Sprite do

add sprites to list where

While the test blocks can be placed in any sprite, it is our experience that
the most convenient place is a dedicated sprite with only test code or
in the stage if it does not have code itself. However, this introduces an
additional complication: how can the test sprite execute blocks in other
sprites? For example, the test sprite might want to move a certain sprite,
which is not possible in vanilla Scratch.

To this end, Poke provides a C block, whose contents will be executed in
the selected sprite. Technically, this re‐uses the broadcastingmechanism
built into Scratch. Behind the scenes, the following process happens:

1. Before executing a test, Poke will generate a unique broadcast for
each of these C blocks.

2. The contents of the C block are copied to the sprite that will execute
them.

3. These copied blocks are placed under a hat block that will trigger
when the generated broadcast is sent.

4. The original blocks are replaced with a send broadcast block.

137

Chapter 5. A testing framework for Scratch

When the virtual machine executes this code, it will send the broadcast,
which will trigger the blocks in the correct sprite. This happens trans‐
parently for the user: the copied blocks are not visible to the user, and
special care has been taken to ensure that there are no performance
issues. For example, the blocks are only copied once (or when they are
changed).

5.7.3. Feedback in the Scratch environment

For this prototype, showing feedback to students was not a priority. As
such, the feedback is shown in a rudimentary interface, which shows
the feedback in a tree format (figure 5.5). While usable, it is not the most
intuitive layout, especially considering the target demographic of Scratch
users.

5.7.4. Comparing Poke to Itch

To verify that Poke is usable as a testing framework, we compared it
to the set of Scratch problems from the Flemish Programming Contest
(section 5.6.1) that were testable by Itch.

Three of the exercises couldnot be testedwithPoke, but thiswas expected.
Poke does not support extensions at the moment, and these exercises
use the Pen extension. One of these three exercises would not be testable
anyway, for the same reason Itch could not test it: drawing a house is an
open‐ended exercise. The other exercises could be tested with Poke if
the Pen extension were supported.

Listing 5.9 shows the Poke test suite for the Grow and shrink exercise. For
comparison, the Itch test suite for the same exercise is listing 5.1.

5.7.5. Conclusion and future work

Poke shows that it is possible to create a testing framework for Scratch
implemented in Scratch. While not as powerful as a JavaScript‐based
framework like Itch, it is much easier to use, especially for educators
without experience in JavaScript. In addition, besides some known lim‐
itations, Poke is able to test real‐world exercises.

Poke is a prototype, which means that we intentionally did not consider
some important aspects, especially for use in educational practice. We
identify three major areas where further work is needed.

138

5.7. Writing test suites in Scratch

Test Results

▶ Test if sprites get bigger

Test if sprites get smaller

Pressing the "k" key

Giga got smaller

Nano got smaller

Pico got smaller

Pressing the "k" key

Giga got smaller

Nano got smaller

Pico got smaller

Pressing the "k" key

Giga got smaller

Nano got smaller

Pico got smaller

Pressing the "k" key

Giga got smaller

Nano got smaller

Pico got smaller

▶

▶
▶

▶
▶

Sprite TESTING x -52 y 43

Size 100 Direction 90

Giga Nano Pico TESTING

Stage

Backdrops

1

SoundsCostumesCode Feedback

File Edit Tutorials grow and shrink Share See Project Page scratch-cat

Figure 5.5. Feedback for the Grow and shrink exercise. The submissions̓ im‐
plementation contains an error: the sprite Giga does not implement the
shrinking behaviour (with the s key). In the feedback, there are two test
groups: one for checking that sprites grow and one for checking that sprites
shrink. In each of these groups, the relevant key is pressed four times and
each sprite is checked. In the “grow” group, everything is correct (indicated
by the green tick marks). As expected, the second group reports that some
tests have failed (indicated by the yellow triangles). Two of the subgroups are
open: while the tests for Nano and Pico were correct, the one for Giga failed
as expected (indicated by red crosses). Listing 5.9 shows the test suite that
generated this feedback.

139

Chapter 5. A testing framework for Scratch

when clicked

set snapshot-before to snapshot

press g key and wait

assert size of Giga > size of Giga in snapshot-before named Gigga got bigger

assert size of Nano > size of Nano in snapshot-before named Nano got bigger

assert size of Pico > size of Pico in snapshot-before named Pico got bigger

test group Pressing the “g” key

repeat 4

test group Test if sprites get bigger

set snapshot-before to snapshot

press s key and wait

assert size of Giga < size of Giga in snapshot-before named Gigga got smaller

assert size of Nano < size of Nano in snapshot-before named Nano got smaller

assert size of Pico < size of Pico in snapshot-before named Pico got smaller

test group Pressing the “s” key

repeat 4

test group Test if sprites get smaller

Listing 5.9. The complete test suite for the Grow and shrink exercise in Poke. The
grey blocks are part of the Poke extension. The rendered feedback is shown
in figure 5.5.

140

5.8. Conclusions

Support for Scratch features

While normal for a prototype, Poke misses support for various Scratch
features. For example, there is no support for sound blocks. The Pen ex‐
tension is the most‐used extension and not supported at the moment.

Representation of the feedback

The manner in which feedback is shown to students must be improved.
Currently, the feedback is rather text‐heavy and dry, which does not
integrate well with the game‐like nature of Scratch. In addition, we
envision that a different representation might be needed for educators
and for students.

Organizational aspects of Poke

We have currently not considered any of the organizational aspects that
arise when attempting to use a testing framework in an educational
setting. The tests are currently included in the Scratch project itself.
While useful if students want to create and use their own tests, it is
less than ideal for educator‐provided test suites. For example, there is
currently no way of preventing students frommodifying the test code.
There is also no support for updating the tests after the fact. For example,
in many settings, students receive a “starter” Scratch project in which
some code is already present. If the test suite is included in that project,
there is no way of updating the test suite after the starter project has
been distributed to students.

Poke also has no support for running tests automatically. This would
be required, for example, if the Scratch exercises are used as part of an
online judge platform.

5.8. Conclusions

In this chapter, we have presented Itch (and Poke) as an educational test‐
ing framework for Scratch. With the three phases of the test suites, Itch
is able to perform static testing, emulate user interaction, and perform
post‐mortem testing. Itch provides various helper functions to make
testing common scenarios easier. The combination of the three phases

141

Chapter 5. A testing framework for Scratch

allows for a lot of flexibility in how an exercise can be tested: from fully
static to completely dynamic.

We also discussed our experiences using Itch in educational practice.
While most exercises can be tested, it remains a challenge to design
Scratch exercises that are both easy to test dynamically and open‐ended
enough to go well with the game‐like and tinkering nature of Scratch.
It is tempting to use static tests, as they are faster and easier to write.
However, while there are good reasons for using static testing, we want
to emphasize that dynamic, behavioural testing provides a better experi‐
ence for students.

Finally, writing test suites in JavaScript is a barrier for educators whose
experience is limited to Scratch. We therefore explored a prototype of a
testing framework that allows writing test suites in Scratch itself. While
writing the tests is technically feasible, some challenges remain. The
main one is the organizational aspects of managing these Scratch tests
suites in an educational context.

142

Chapter 6.

A debugger for Scratch

Everyone knows that debugging is twice as hard as writing a
program in the first place. So if you’re as clever as you can be
when you write it, how will you ever debug it?
— Kernighan & Plauger, The Elements of Programming Style

The process of teaching young students to code is often slowed down by
the delay in providing feedback on each student s̓ code. Especially in lar‐
ger classrooms, teachers often lack the time to give individual feedback to
each student. That is why it is important to equip students with tools that
can provide immediate feedback and thus enhance their independent
learning skills. This chapter presents Blink, a debugging tool specifically
designed for Scratch, the most commonly taught programming language
for young students. Blink comes with basic debugging features such as
ʻstepʼ and ʻpause ,̓ allowing precisemonitoring of the execution of Scratch
programs. It also provides users with more advanced debugging options,
such as back‐in‐time debugging and programmable pause. A group of
students attending an extracurricular coding class have been testing the
usefulness of Blink. Feedback from these young users indicates that
Blink helps them pinpoint programming errors more accurately, and
they have expressed an overall positive view of the tool.

6.1. Motivation and significance

As society becomes increasingly digital, the demand for computer sci‐
ence education is also growing. Current projections suggest that up
to 90% of the workforce will need some level of digital skills to fulfil
their professional responsibilities (Bejaković and Mrnjavac 2020). A not‐
able trend in European computer science education is the increasing
integration of coding in the curriculum of both primary and second‐
ary schools (Balanskat and Engelhardt 2015). Countries such as Estonia,

143

Chapter 6. A debugger for Scratch

France, Spain, Slovakia, and the United Kingdom are leading the way in
this integration.

With the increasing emphasis on computer science education, the need
for effective tools to facilitate coding education has also grown. The
Lifelong Kindergarten group at mit has played a crucial role in this area
by developing Scratch (Resnick, Maloney et al. 2009), an introduction
of which is given in chapter 4. Many computer science curricula have
adopted Scratch to teach students the basics of computer science, as it is
a useful tool for teaching computational thinking concepts (Zhang and
Nouri 2019).

As students navigate the programming landscape, they will inevitably
encounter bugs that cause unexpected behaviour during code execu‐
tion (Zeller 2009), and Scratch is no exception. The difficulty in detecting
the root cause of a failure is that when a bug is activated, the system
will arrive in an erroneous state but might still behave as expected. It is
only later when this erroneous state is propagated throughout the system
that the system will reach a state that is observably wrong, leading to a
failure (Ammann and Offutt 2016). Additionally, Scratch uses a “failsoft”
mode: errors are often swallowed, and execution continues without noti‐
fying the user (Hromkovič and Staub 2021). Starting from the failure and
working backwards to find the bug can be a daunting task, especially in
larger or more complex programs.

In a classroom setting, the onus often falls on the teacher to guide stu‐
dents in identifying these bugs. However, the inherent flexibility of
programming – where different code can produce the same result –
makes this a labour‐intensive task for teachers (C. Kim et al. 2018). A
tool that makes it easier for students to identify errors is therefore essen‐
tial, encouraging independent learning and reducing the workload of
teachers.

In response to this need, wepresent Blink, a debugger tailored for Scratch.
Blink provides features that allow precise tracking of the execution of
a Scratch program, making it easier to identify the cause of unwanted
behaviour. By integrating these features into the Scratch programming
language, the Blink debugger has the potential to help millions of stu‐
dents learn to code.

6.2. Software description

The Blink debugger is built on top of and adds extra functionality to the
Scratch environment (figure 6.1). When the debugger is disabled, all

144

6.2. Software description

Figure 6.1. Blink additions to the controls and canvas of the Scratch environ‐
ment. The bug‐shaped button (underlined in orange) enables and disables
the debugger. It is the only Blink addition that is visible in the environment
in normal mode. Other additions become visible when in debug mode. The
back‐in‐time slider underneath the canvas shows the progress of the recording
and allows users to jump back and replay the recording. The small button
to the right of the slider (underlined in green) allows the user to clear the
recording. The red dot (underlined in red) indicates if recording is active by
blinking. The back, play/pause, and forward buttons (underlined in pink, blue
and yellow) allow the user to control either the recording or the execution.

145

Chapter 6. A debugger for Scratch

functionalities of the base Scratch environment remain unchanged. To
activate (and deactivate) debugmode, the usermust press the bug‐shaped
button above the canvas. While the debugger is active, the navigation bar
turns green as a visual aid. This way, a clear distinction is made between
the default Scratch execution mode and debug mode.

6.2.1. Stepwise execution

While the debugger is active, the execution of the Scratch project can be
paused. In this state, execution can be continued in a stepwise manner,
with the step button. Pressing this button will execute exactly one block
in all scripts for which there is a corresponding thread in the Runtime
(see section 6.3.1). After each step, the execution will pause again. This
way, the programmer can execute the program at their own pace, provid‐
ing greater understanding of the impact of each block on the program
state and making it easier to identify where errors may occur. To return
to the normal execution of the program, the resume button can be used
(the same button as the pause button: which changes shape based on
the execution state).

To be able to closely follow how a Scratch program is executed, Blink
highlights blocks in the workspace with a dark grey hue. During the
execution of the program, these are the next blocks that will be executed
in each active script. These blocks are also highlighted when replaying a
recording of the program.

6.2.2. Back-in-time debugging

Finally, Blink allows replaying the last execution (i.e. the recording) of a
Scratch program, inspired by back‐in‐time debuggers. These debuggers
allow the programmer to go back in the execution, often by recording
program execution (Balzer 1969; Barr and Marron 2014; Barr, Marron
et al. 2016; Chen et al. 2001; Crescenzi et al. 2000; Czaplicki and Chong
2013; Ungar et al. 1997). When the debugger is active, a recording is auto‐
matically made, as can be seen on the slider below the canvas. Selecting
a point on the slider or pressing the back button will pause execution,
and the selected point in the recording will be restored. This includes
the entire visual state of all sprites and their clones. While back‐in‐time
debugging is a quite complex debugger feature, our experimental study
in section 6.5.2 shows that providing a simple video‐player‐like interface
is intuitive for young students.

146

6.3. Software architecture

6.2.3. Programmed breakpoints

pause pause if wait until and pause

Blink adds three custom blocks to Scratch to manually program break‐
points. Additionally, debugger is enabled? reports whether the debugger is cur‐
rently active or not. When in debug mode, the execution of the pause
block suspends the Scratch program. In contrast, the pause block rep‐
resents a conditional breakpoint that only pauses the execution if its
corresponding condition evaluates to true. The wait until and pause
block waits until a condition holds and then suspends the execution.

6.3. Software architecture

Internally, Scratch consists of several interconnected components imple‐
mented in JavaScript (section 4.2). However, for the integration of Blink,
changes were only made in the virtual machine and the user interface.
The interaction between these two components is shown in figure 6.2.

The Blink debugger consists of threemain components: instrumentation
of the virtual machine for stepping, recording of the execution state, and
the custom debug extension, which implements the breakpoints.

6.3.1. Instrumentation for stepping

The virtual machine executes Scratch programs and preserves their
current state. It consists of three main modules: the Runtime, the
Sequencer, and the Executemodule. The Runtimemodulemaintains
a list of active threads. These objects embody the execution state of a
script. Threads are created when certain events trigger (i.e. a green flag
is clicked), but can also be removed from the runtime (i.e. when deleting
a clone). A Scratch program is executed by repeatedly calling the _step
method of the Runtime, typically 30 times per second. This method
subsequently manages threads and calls stepThreads as shown in fig‐
ure 6.2. This will then call stepThread for each thread in the virtual
machine. This last method will finally call the executemethod on the
Execute class, which will do the actual executing.

Blink implements the pause, step, and resume commands of the de‐
bugger by instrumenting the _step method of the Runtime. The in‐
strumentation consists of injecting the code for recording state into this
_stepmethod in the Blink fork of the Scratch virtual machine. If the

147

Chapter 6. A debugger for Scratch

startHats()

Events

execute()

stepThread()

stepThreads()
_step()

External Runtime Sequencer Execute

loop [for each thread]

timer [30 times per second]

Figure 6.2. Sequence diagram showing the interactions in the virtual machine
relevant to the debugger. The Runtime receives events from the user interface
or from user interaction (grouped as “External” in the diagram), in response
to which threads are created or removed. Meanwhile, the _step method
is called 30 times per second (this is implemented inside the Runtime, but
should be considered external). This method manages the threads, and calls
stepThreads, which will then call stepThread for each thread in the vir‐
tual machine. This last method will finally call the executemethod on the
Execute class, which will do the actual executing.

148

6.3. Software architecture

execution of the program is paused, no stepswill be taken. It is important
to note that all other tasks performed by the _stepmethod will still be
carried out. Therefore, user actions will continue to result in the creation
of threads, which will, however, not be executed.

If, on the other hand, the execution is paused, but a step is taken, the
_stepmethod will execute one block for each active thread. If the exe‐
cution is not paused, the _stepmethod behaves as normal.

The definition of a step in Blink differs from the _stepmethod in the
virtual machine and does not execute a single block, as the step func‐
tionality does in a traditional debugger. This is a consequence of the
Scratch execution model, which presents a dichotomy between code
execution and user observable state. The former is inherently sequential:
the virtual machine executes one block after the other, decides when a
thread switch is needed, and in what order threads are executed. The
latter is inherently concurrent: multiple sprites/clones act at the same
time.

In Blink, we prioritize maintaining the observed concurrency by ensur‐
ing that when stepping through the code, all scripts advance simultan‐
eously for focused debugging. This approach allows users to keep focus
on relevant scripts without distractions from visible thread switches
or manual stepping, which can be cumbersome in complex programs.
Users can thus focus on the script(s) they believe are involved in the
failure while ignoring (correct) scripts running at the same time. We
discuss this more in great depth in chapter 7.

6.3.2. Back-in-time debugging

Blink also offers back‐in‐timedebugging capabilities. During a debugging
session, it instruments the virtual machine and constructs a snapshot of
the program state each time a step is executed. These snapshots contain
the entire state of the Scratch program, including the position of the
sprites, the active blocks, clones, and the pen. To implement this feature,
we modified the Execute component (figure 6.2) to create a snapshot
at the end of the executemethod. Once a debugging session has been
completed, these snapshots can be consulted to restore the program
state.

149

Chapter 6. A debugger for Scratch

6.3.3. Programmed breakpoints

Pausing the execution of a running program by manually stepping and
pausing the execution can rapidly become tiresome. Therefore, many
debuggers include the ability to set user‐defined breakpoints. In Blink,
we have extended the block language to include four additional blocks to
pause the execution of a program, to inspect whether the debugger is
active and to stop the program based on a condition.

In our original design, we experimentedwith a large set of highly specific
debugging blocks, for example, a block to stop execution when a sprite
hits the wall. However, we came to the conclusion that it would be
impossible to account for every possible use‐case. Therefore, we decided
it would be better to provide a small set of fundamental debugging blocks,
which can be composed with existing Scratch blocks to express more
specific debugging blocks.

6.4. Examples

In this section, we give two illustrative examples to demonstrate how
Blink assists in detecting bugs in Scratch programs. The first project
consists of guiding a sprite through a maze without going through the
walls. The second project is a typical logo exercisewhere a sprite needs to
walk over a star figure without falling into the surrounding water. These
projects are typical Scratch exercises where we believe the debugger can
be helpful in finding bugs easier and faster.

6.4.1. Maze exercise

The Maze exercise involves a single sprite in the shape of a red triangle
representing the player.1 The goal of the exercise is to write a program
that navigates the player through the maze when the user presses the
green flag. Correctly navigating consists of not letting the player navig‐
ate through the walls of the maze. In figure 6.3 we show code, which
seems to navigate the player through the maze correctly when executing
the project. Unfortunately, there is a small mistake towards the end
of the solution, which is difficult to see when executing the program
at full speed. By making use of the debugger, it becomes easy to nav‐
igate through the execution of the program step‐by‐step, which makes
it apparent where the player has taken a misstep. Additionally, due

1https://scratch.ugent.be/blink/editor?project=/blink/maze.sb3

150

https://scratch.ugent.be/blink/editor?project=/blink/maze.sb3

6.4. Examples

180

step 1

-90

step 1

0

step 1

-90

step 1

0

step 2

90

step 1

point in direction

point in direction

point in direction

point in direction

point in direction

point in direction

Backpack

Sprite Player x -90 y 29

Size 100 Direction 0

Player

Stage

Backdrops

1

SoundsCostumesCode

10move steps

15turn degrees

15turn degrees

random positiongo to

-90 29go to x: y:

1 random positionglide secs to

1 -90 29glide secs to x: y:

90point in direction

mouse-pointerpoint towards

10change x by

-90set x to

Motion
Motion

Looks

Sound

Events

Control

Sensing

Operators

Variables

My Blocks

Debugger

➡

File Edit Tutorials maze Share See Project Page scratch-cat

Figure 6.3. The Maze exercise. The execution is paused before the failure occurs.
As indicated by the light grey colour, we are in the step 2 block. The next block
is the move STEP SIZE steps block, as indicated in dark grey. However, since the sprite
Player is pointing upwards, it will go through the wall. The bug is in the step 1

block indicated by the red arrow. The solution is to replace this block with a
step 2 block: in which case the Player would have moved one square more to
the left, meaning the Player can go up without going through a wall. Note that
further changes are needed to reach the exit of the maze.

151

Chapter 6. A debugger for Scratch

 touching color ?pause if

forever

when clicked

when clicked

erase all

-70 145

 set pen color to

162

5

100

72

100

14turn degrees

move steps

turn degrees

move steps

pen up

repeat

point in direction

pen down

go to x: y:

Backpack

Sprite Player x 158 y 26

Size 100 Direction 104

Player

Stage

Backdrops

1

SoundsCostumesCode

10move steps

15turn degrees

15turn degrees

random positiongo to

158 26go to x: y:

1 random positionglide secs to

1 158 26glide secs to x: y:

90point in direction

mouse-pointerpoint towards

10change x by

158set x to

Motion
Motion

Looks

Sound

Events

Control

Sensing

Operators

Variables

My Blocks

Debugger

Pen

➡

File Edit Tutorials star Share See Project Page scratch-cat

Figure 6.4. The Star exercise, which has two scripts. The bottom script contains a
bug: the turn 14 degrees block (red arrow) should be a turn 144 degrees block. The top script
helps to find the bug: once running, the code loops forever, evaluating the
breakpoint each time, and pausing execution if the condition is true.

to back‐in‐time debugging, it is easy to trace back to precisely where
the bug emerged in the code. With more traditional debuggers, which
only provide step‐wise execution, programmers frequently discover pro‐
gram errors too late, necessitating restarting the complete debugging
session.

6.4.2. Star exercise

While the Maze exercise demonstrates the capabilities of Blink in regard
to step‐wise execution and back‐in‐time debugging, the Star exercise
demonstrates the helpfulness of our custom debugging blocks.2 The
aim of this exercise is to walk over a star‐shaped figure surrounded by

2https://scratch.ugent.be/blink/editor?project=/blink/star.sb3

152

https://scratch.ugent.be/blink/editor?project=/blink/star.sb3

6.5. Impact

water. Any program that directs the player into the water is buggy. By
making use of Blink s̓ custom debugging blocks, it is quite easy to pause
the execution of the program when the player touches something blue
(figure 6.4). As soon as the green flag is clicked, the code repeatedly
checkswhether the player is touching something blue. If it does, program
execution is paused by using the pause if block.

6.5. Impact

6.5.1. Related work

While most textual programming languages have debuggers, the em‐
phasis in this chapter is on block‐based languages. In this domain (ex‐
cluding Scratch), themost notable debuggers are theMicrosoftMakeCode
Arcade (Ball et al. 2019) debugger and the Blockly debugger (Savidis and
Savaki 2020). Both of these debuggers offer basic debugging facilities,
such as breakpoints, step functionality, and variable watches. Unfortu‐
nately, these debuggers are not applicable to the Scratch environment be‐
cause both MakeCode Arcade and Blockly assume a sequential execution
model, while the Scratch programming language is inherently concur‐
rent. The Snap! block‐based programming language (Mönig and Harvey
2024) does support concurrency, but its debugger lacks back‐in‐time de‐
bugging functionality. Next to block‐based programming languages, we
have taken inspiration from back‐in‐time debuggers (Barr and Marron
2014; Barr, Marron et al. 2016).

For Scratch, we are aware of three existing debuggers. The first provides
pause/resume/step functionality and breakpoints (B. L. Wang and Klop‐
fer 2021). The second debugger is a browser extension that provides
breakpoints and advanced logging (Scratch Addons 2023). The last, and
most recent, debugger is NuzzleBug (Deiner and Fraser 2024). It provides
similar functionality to Blink, but makes some different choices in its
implementation and user interface. For example, the step functionality
in NuzzleBug is a more traditional step, advancing one block at a time.

The need for tools to help find bugs in Scratch projects is also illustrated
by the existence of other tools. These include multiple linter‐style tools
likeHairball (Boe et al. 2013), Dr. Scratch (Moreno‐León and Robles 2015),
QualityHound (Techapalokul and Tilevich 2017) and LitterBox (Fraser
et al. 2021), or test frameworks such asWhisker (Stahlbauer, Kreis et al.
2019) and itch (Johnson 2016).

153

Chapter 6. A debugger for Scratch

6.5.2. Experimental study

To validate the usefulness of the debugger in helping students understand
their code better, we conducted a quasi‐experimental study (Shadish et al.
2002). The test group consisted of 16 students aged 8 to 11, which is at
the lower end of Scratchs̓ target audience.

Our experiment started with a short introduction explaining the different
features of Blink and how they can be used. Subsequently, we provided
the students with two projects as discussed in section 6.4. Both projects
contained an error leading to unwanted behaviour during the execution
of the program. During each exercise, we encouraged the students to
make use of the features of the debugger to correct the implementa‐
tion.

Our study aimed to determine the ease of use and usefulness of Blink.
Participants were asked to rate both aspects for three different aspects of
the debugger tool: traditional debugger operations, usage of breakpoints,
and back‐in‐time debugger. A five‐point scale, represented as a row
of smiley faces, was provided for each statement. The results of this
questionnaire are shown in figure 6.5.

The findings indicate unanimous agreement among participants that
revisiting previous states is a straightforward and advantageous approach
for identifying errors in Scratch code. The custom breakpoints were less
intuitive for most students and received a lower score on ease of use.
While breakpoints were conceptually clear to most students, when they
were asked to implement a custom breakpoint to pause the execution,
many of them struggled. Finally, if we look at the score distributions for
the debugger in general, we can see that they embody the combination
of the distributions for the usage of the breakpoints and the ability to go
back in time.

6.6. Conclusions

In this chapter we introduced Blink, a debugger for the Scratch program‐
ming language. Blink offers stepwise execution, back‐in‐time debugging,
and the ability to define custom breakpoints. These features allow stu‐
dents to closely follow the execution of their programs and consequently
make it easier to find errors. To evaluate the effectiveness of our debugger,
we conducted a quasi‐experimental study. The results of this study show
that most aspects of the debugger are both useful and easy to use. We
observed a strong preference for back‐in‐time debugging and observed

154

6.6. Conclusions

4 2 0 2 4 6 8 10 12 14 16

Go back in time

Debugger
Breakpoints

№of responses

It is easy to use

Strongly disagree Disagree Undecided
Agree Strongly agree

4 2 0 2 4 6 8 10 12 14 16

Go back in time

Debugger
Breakpoints

№of responses

It is useful for detecting errors

Figure 6.5. Answers regarding the ease of use and the usefulness of the debugger
in general, the breakpoints and the ability to go back in time to detect errors.

155

Chapter 6. A debugger for Scratch

that custom breakpoints are less intuitive than back‐in‐time debugging.
In future work, we will focus on inventing novel user interface elements
to further improve the ease of use for programming custom breakpoints
for students.

156

Chapter 7.

The Scratch executionmodel

Concurrency is often considered an advanced programming
technique. Yet our everyday world is highly concurrent, so
Scratch users are not surprised that a sprite can do several
things at once.
—Maloney & Resnick, The Scratch Programming Language

and Environment

The programming language Scratch inherently supports parallel pro‐
gramming. Each Scratch program (called a project) consists of a number
of sprites with individual code (chapter 4). Blocks that are attached to‐
gether form scripts, and each sprite can have multiple scripts running
concurrently as separate threads within the Scratch virtual machine.

The Scratch execution model combines a fixed‐step time loop (30 frames
per second) with an almost‐cooperative threading model. This means
that threads are seldom interrupted,mostly relying on explicit yielding to
other threads. While this approach minimizes the occurrence of certain
race conditions, some concurrency issues persist (Maloney et al. 2010).
For instance, the order in which sprites respond to broadcasts can be un‐
predictable. Consequently, even without explicit concurrency controls,
Scratch is a useful tool for teaching concurrency concepts (Fatourou et al.
2018).

However, the current execution model has some drawbacks. The cooper‐
ative nature of the threading model can lead to unexpected behaviour
when working with multiple sprites. Additionally, the execution model
complicates the use of debuggers within Scratch. A traditional step func‐
tion (which steps one block at a time) exposes execution states that are
normally hidden. Alternative step functions (see, for example, the one
used by Blink in section 6.2.1) diverge from the normal execution and
are thus undesirable.

To address these issues, this chapter begins with an in‐depth explora‐
tion of Scratchs̓ current execution model. This analysis is essential for
understanding the subsequent section, where we explore the model s̓

157

Chapter 7. The Scratch execution model

when clicked

move 100 steps

turn 90 degrees

move 100 steps

turn 90 degrees

move 100 steps

turn 90 degrees

move 100 steps

turn 90 degrees

when clicked

move 100 steps

turn 90 degrees

repeat 4

Listing 7.1. Two Scratch programs that seemingly exhibit the same behaviour:
the sprite moves in a square of 100 steps, and finally stops at the same position
as the start of the program.

shortcomings in more detail. We then propose some modifications to
the execution model, which would solve the issues we have identified.
These modifications are finally evaluated to determine their impact on
real‐world Scratch projects in a preliminary benchmark.

7.1. Elements of a Scratch program

A Scratch program consists of zero or more sprites and a stage (see also
chapter 4). For every sprite at least one target is created (a target is what
is drawn on the screen), while the stage has exactly one target. All targets
have their own local state: the variables and visual properties (e.g. posi‐
tion, size, bounding box, colour, direction). Clones create more targets
of the same sprite. While clones have their own separate state, all targets
based on the same sprite share the same code. In the virtual machine,
there is no substantial difference between how targets from different ori‐
gins (sprites, stage, clones) are handled, so we can just consider targets
for the remainder of this chapter.

Code‐wise, the Scratch blocks are organized into categories (see sec‐
tion 4.1.1). However, in this case, it is useful to look at their technical
type, which corresponds to their shape. In total, there are seven types of
blocks:

158

7.2. Related work

1. Hat blocks … , which are placed at the start of a script (they
are named hat blocks since they visually sit on top of a script). A
script can only have one hat block. They function as event listeners,
which trigger execution of the script if the event occurs.

2. Stack blocks … , representing program statements. These are the
most common blocks. They are called stack blocks since they are
stacked on top of each other. Stack blocks broadly fulfil the role of
statements in Scratch.

3. C blocks
…

, which are named after their shape. They are used

formost of the control flowblocks: loops and branches. The variant
for the if/else block is sometimes called an E block since it has two
slots.

4. Reporter blocks … , act as variables or values and can be slotted
into other blocks. Operators that result in a value also have this
shape. The reporter blocks fulfil the role of expressions.

5. Boolean blocks … , which are analogous to reporter blocks but
result in a boolean.

6. Cap blocks … , which end a script: no blocks can be added after‐
wards. Note that the infinite loop block, for example, is both a C
block and a cap block.

7. Custom blocks define … , which define “procedures”.

7.2. Related work

The Scratch execution model is defined by its implementation in the
virtual machine. There exists, at least to the knowledge of the authors,
no comprehensive formal description of the execution model. This does
not mean there is no prior work. From the Scratch team, Maloney et al.
(2010) provide a high‐level description of the threading model.

Another body of works that provides insights into the Scratch execution
model comes from the Chair of Software Engineering II group, led by
Gordon Fraser. These publications all provide descriptions for parts of
the execution model.

First, Stahlbauer, Kreis et al. (2019) propose a formalization of three as‐
pects in Scratch: the user perspective, a syntactic model and a semantic
model. They describe the semantics of Scratch with a memory model
based on message passing. Next, Stahlbauer, Frädrich et al. (2020) de‐
velop LeILa, an intermediate language to which Scratch projects can
be translated, with the intended use of performing analysis on Scratch

159

Chapter 7. The Scratch execution model

projects. The authors also provide a formalization of LeILa, using ap‐
proximations for the behaviour of Scratch in some areas. Also, Gotz et al.
(2022)model the state‐based behaviour of Scratch programs using a finite
state machine. Finally, Deiner, Feldmeier et al. (2023) delve deeper into
the actual execution of the virtual machine, while also proposing some
modifications to it, for example, to make execution deterministic.

Other block‐based languages also have to deal with concurrency. For ex‐
ample, MakeCode also uses a non‐preemptive threading model, inspired
by Scratch (Ball et al. 2019). There has also been some work on concur‐
rency and concurrency controls in other block‐based languages (Chung
et al. 2020). However, since these languages do not use the Scratch virtual
machine for execution, their relevancy for this chapter is limited.

7.3. The current executionmodel

7.3.1. Execution of a Scratch program

When executing Scratch code, the virtual machine transforms the blocks
into an abstract syntax tree. These are organized by target, and every
execution of a script results in a distinct thread inside the virtualmachine.
These are green threads: implemented fully in the virtual machine.

The virtual machine is thus responsible for scheduling these threads.
Figure 6.2 gives a schematic overview of the interaction between the
different parts. It uses an almost‐cooperative threading model, which
Maloney et al. (2010) call the “Scratch threading model”. This means it is
mostly non‐preemptive: the virtual machine will not interrupt threads
at arbitrary points in their execution. The threads must voluntarily yield
control or reach a limited set of points in their execution. The rational is
given in Maloney et al. 2010: “Scratch builds concurrency control into its
threading model in a way that avoids most race conditions, so that users
do not need to think about these issues. This is done by constraining
where thread switches can occur.”.

At four well‐defined points, a thread always yields, thus causing said
thread switching:

1. When a blockwith a fixed duration is executed. There are a number
of blocks that fall under this category. wait is an obvious inclusion,
but this also applies to glide secs to x: y: , for example. play sound until done also
falls under this category, even if there is no explicit time.

Arguably, it is
more of a concrete
syntax tree, as e.g.
the position of
blocks is also
saved. However,
in Scratch’s case,
the differences are
minimal, so we
call it an abstract
syntax tree, as
Scratch
themselves do.

160

7.3. The current execution model

Tick
Step (30/s)

Thread 11 Thread 21 Thread n1

2

Figure 7.1.Overview of the interplay between the threadingmodel and the “game
loop”. Within one step (which is done 30 times per second), one or more ticks
are executed. The arrow with 2 illustrates this: after the first tick, another is
started if less than 75% of the step time (the time one step has to complete,
33ms) has been used, and a redraw has not been requested, and Scratch is
not in turbo mode. Within one tick, a turn is executed for each thread 1 : a
thread executes until it terminates or the thread yields.

2. When a block waits on execution of other blocks. For example,
broadcast something and wait .

3. The last block of a loop (thus forever ,
repeat

, and
repeat until

). This

means thread switching will occur after every loop iteration.

4. A recursive procedure call is detected. Scratch attempts to detect
these (up to five levels of indirection) and will yield the thread on
each call if it detects a recursive call.

There is one exception: when using procedures “without screen refresh”,
Scratchwill interrupt a thread that runs longer than 500ms. This is called
the “wrap timer”, and has some curious edge cases.1

The threads are executed in a first‐come, first‐servemanner: there are no
priorities nor changes in thread order. The first thread is executed until
it yields or ends, then the next thread, and so on. We call the execution
within one thread until it yields or ends a turn. A thread can have one of
three conceptual states: done, running, and yield.

The virtual machine uses a fixed‐time step with synchronization main
loop (Nystrom 2014), also called a synchronized coupled model (Valente

1https://github.com/scratchfoundation/scratch-vm/issues/2834

161

https://github.com/scratchfoundation/scratch-vm/issues/2834

Chapter 7. The Scratch execution model

et al. 2005). This means that the virtual machine runs in steps: internally,
the step function is called every 33ms (so 30 times a second, commonly
known as 30 fps).

In each step, the virtual machine will execute one or more ticks. A tick
is one turn in every thread: the first thread is executed until it yields or
terminates, then the second thread and so on. After the tick, a redraw
is performed if needed (in practice this is always done, as the source
code contains a to‐do to implement selective redrawing). After the first
tick is finished, the virtual machine decides whether to run another tick
(figure 7.1). A new tick is started if less than 75% of the step time (the
time one step has to complete, 33ms) has been used and a redraw has
not been requested. Note that once a tick has started, it is run completely
and cannot be stopped. The arbitrary 75% is intended to prevent frame
drops: steps that take longer than their allocated step time, meaning the
next step is delayed. Also, in practice, many blocks request a redraw, so
in many Scratch projects, a step only ever runs one tick.

A concrete example of the execution model is given by figure 7.2, which
shows the execution of the programs from listing 7.1. These programs
have only one thread. Since none of the blocks in the unrolled program
yield the thread, the full program is executed in one tick. In the other
version, with a loop, the thread yields after each iteration of the loop,
meaning the program needs four steps. This does result in an observable
difference: in the unrolled program, the sprite does not move visually.
As a redraw only happens between steps, the sprite is back at its ori‐
ginal position. In the looped version, the sprite moves four times (albeit
rapidly), as there is a redraw between each step.

7.3.2. Implementation details

How different parts of the virtual machine implement the execution
model from section 7.3.1 is shown in figure 6.2. When the user interface
loads a project, it also starts the virtual machine. This means that the
game loop is active (this is done in the class Runtime).

New threads are only created in two scenarios:

• Code needs to be executed, either because an event triggered some
hat blocks (green flag, key press, etc.) or because the user clicked
on some blocks.

• When “stage monitors” or watchers are active. These are used in
the user interface to show the value of variables or properties. The
watchers for variables also allow the user to change the value of
the variable.

Scratch 3 should
actually run at
60 fps; however
Scratch enables a
compatibility
mode by default,
resulting in 30 fps.

162

7.3. The current execution model

Step 1

move 100 steps

turn 90 degrees

move 100 steps

turn 90 degrees

move 100 steps

turn 90 degrees

move 100 steps

turn 90 degrees

Tick 1

0ms

0.33ms

0.66ms

0.99ms

draw

draw

draw

draw

Step 1

move 100 steps

turn 90 degrees

repeat 4

Tick 1

Step 2

move 100 steps

turn 90 degrees

repeat 3

Tick 1

Step 3

move 100 steps

turn 90 degrees

repeat 2

Tick 1

Step 4

move 100 steps

turn 90 degrees

repeat 1

Tick 1

Figure 7.2. The execution of the two programs from listing 7.1. In the unrolled
version (left), all code is executed in the first turn, meaning only one tick and
step is needed. In the version with loop (right), the loop yields after each
iteration, meaning the rest of the step is filled with idle time. In total, four
steps are needed.

163

Chapter 7. The Scratch execution model

The Runtime calls the method stepThreads in the Sequencer class.
This class is responsible for implementing the ticks. After each tick,
done threads are removed, and a new tick is started if possible. It is also
here that the thread status is managed. While there are three conceptual
statuses, the implementation has five:

done The thread has finished executing all blocks and will be removed
after this tick.

running The thread is being executed and has more blocks to execute.
It will be scheduled again next tick.

yield The thread is waiting an amount of time. The thread is scheduled
again next tick to see if the wait time is over.

promise wait The thread is waiting for a JavaScript promise to be
resolved, after which the thread will be set to running.

yield tick The thread yields until the next step. The purpose of this
status seems to be some performance optimizations to aid with
benchmarking.2

Each thread maintains a stack structure. The Sequencer will then look
up the next block on said stack, and if there is one, it will call theExecute
class. That class will actually execute the block on the stack. For normal
blocks (somewhat confusingly called “stack blocks”, since they stack
together to form a script), the current block is popped from the stack,
the block is executed, and the next block is put on the stack. The stack is
only useful when working with C‐blocks or procedures. For example, C
blocks will push the first block in their slot on the stack. In the case of a
loop, a counter is saved in the stack frame to determine howmany times
the loop should be run. The exact implementation of the stack is less
relevant for this chapter, so it is left to the reader to browser the source
code.

7.4. Limitations of the executionmodel

This section illustrates a few limitations of the current execution model,
first in general and then specifically for a debugger.

7.4.1. During general execution

As Maloney et al. (2010) mentioned, the Scratch threading model does
not solve all issues with concurrency. To illustrate this point, we will

2https://github.com/scratchfoundation/scratch-vm/pull/1211

164

https://github.com/scratchfoundation/scratch-vm/pull/1211

7.4. Limitations of the execution model

when clicked

go to x: 0 y: 112

erase all

set pen color to

set pen size to 5

pen down

point in direction 108

move 80 steps

turn 36 degrees

move 80 steps

turn 36 degrees

repeat 4

pen up

when clicked

stop all

if touching color then

forever

Listing 7.2. The implementation, with a bug in the first script (left) and a non‐
working second script (right).

(a) The stage before execution. (b) The stage after execution.

Figure 7.3. Result of running the implementation from listing 7.2 for the Star
exercise.

165

Chapter 7. The Scratch execution model

consider a variant on the Star exercise from section 6.4.2. In this ex‐
ercise, the goal is to let a sprite move around on a path without falling
into the water (read: touching a blue colour). Listing 7.2 shows an im‐
plementation for this exercise with an additional script that will stop
execution if the sprite touches something blue. We asked a number of
educators that had experience with Scratch to predict the behaviour of
this implementation. All of them expected the execution to stop either
when the sprite first touches the water or after executing the block when
the sprite first touches the water. However, as can be seen in figure 7.3,
where the canvas is shown before and after running the code, the second
script that should have stopped execution did not work.

The reason for this is the non‐preemptive thread switching: the body of
the loop is always executed atomically. At the start of the loop, the sprite
does not touch the water. After execution of one iteration, the sprite is
back on the path and does not touch the water. Therefore, whenever
the second script is executed, the sprite is not touching the water, which
explains why the execution was not stopped.

Consider the original code in the Star exercise from section 6.4.2. The
second script there does not stop the execution, but uses Blink s̓ pause
block to halt the execution. Using the current executionmodel, the pause
block will not function for the same reasons mentioned above.

7.4.2. Specifically for a debugger

A fundamental feature of any debugger is the ability to step through code:
executing one statement and then pausing the execution to facilitate
inspection of the program state. The functionality is also essential in
debuggers for Scratch: all existing debuggers for Scratch implement it.
In Scratch, executing a single statement translates to executing a single
block.

However, traditional single‐block steppinghas somedrawbacks in Scratch.
A first drawback is that users have to click a lot, since the stepping func‐
tionality is global, not per thread. Secondly, and more importantly, the
step functionality exposes details of the Scratch execution model to the
users. For example, thread switching, which is normally implicit in
Scratchs̓ perceived parallel execution, becomes visible to the users dur‐
ing debugging.

Additionally, debuggers must choose what to do with intermediate states
that are typically hidden during normal execution. For instance, five
consecutive blocks would result in one redraw in the normal execution.

166

7.5. Towards a new execution model

One choice is to not alter the redraw logic (thus only redrawing when
the normal execution would redraw), but this results in steps having no
visual impact, even if the block logically should change the visuals. The
other choice is to redraw after every step. While the effect of every block
(and step) is then visible, this exposes intermediary steps that would
normally not be drawn. Some blocks (for example, checking if a sprite
touches a colour) use the visual state, meaning these additional redraws
can result in a different execution of the project.

As described in section 6.3, our debugger Blink takes a different approach
to the stepping feature. We believe it is useful to maintain the observed
parallelism of Scratch in the debugger: we define a step in the debugger
as executing one block in every thread. This approach allows users to
keep focus on relevant threads without distractions from thread switches,
which can be cumbersome in complex programs. Users can thus focus
on the script(s) they believe are involved in the failure while ignoring
(correct) scripts running at the same time.

This approach does come at a price: it changes the Scratch execution
model, which is not trivial due to two main considerations:

1. If the execution model is only changed when debugging, the de‐
bugger does not debug the same program execution as when run‐
ning the program. This can result in different behaviour, meaning
the bugs for which the debugger is used need no longer be present
or new bugs, unique to the debugger, could be introduced.

2. If the execution model is changed, we need to ensure that existing
Scratch programs keep working and that we do not introduce con‐
currency problems, as the current execution model of Scratch was
explicitly chosen to avoid those.

We opt for the second option: modifying the Scratch executionmodel. In
the next section, we discuss what we changed, after which we investigate
the impact on performance and behaviour of existing Scratch projects.

7.5. Towards a new executionmodel

In line with how we want the stepping feature of the debugger to work,
we have decided to change the Scratch execution model as follows: we
modify a turn to execute exactly one block before yielding. Thus, in
a single tick, the virtual machine will execute a single block in every
thread.

167

Chapter 7. The Scratch execution model

As there is often only one tick per step (due to many blocks requesting
redraws), this means that only one block would be executed per step
(thus one block for every thread per 33ms). Consequently, this makes
execution slower than in the original execution model.

A possible remedy is to modify the number of steps that are taken. For
example, it might be better to run at twice or more times the number of
steps per second. In turbo mode, this would mean the steps are done as
fast as the hardware allows. While this does make everything go much
faster, it does introduce a big difference in execution time between a
performant machine and a slower machine.

These changes to the execution model have as a benefit that the Star
solution (listing 7.2) will behave as expected, since the first thread will
yield after the first block in the loop. It can also illustrate that this does in‐
troduce concurrency considerations that were not present in the original
execution model. For example, if the conditional block in the second
thread evaluates to true, the first thread will execute another block be‐
fore execution is stopped by the block inside the conditional block from
thread two.

In the next section, we analyse existing Scratch projects to determine
which frame rate for the new execution model most closely results in
the same execution speed as the original execution model (which runs
at 30 frames per second). We also take this opportunity to analyse the
complexity and block use in Scratch projects, to evaluate whether the
concurrency considerations would cause problems.

7.6. Exploration of Scratch projects

As Scratch is used by many people, it is important that changes to the
execution model do not adversely affect existing Scratch projects. How‐
ever, this requires us knowing what Scratch projects look like. The aim
of this analysis is to determine what blocks are used in Scratch projects,
how big projects are, and what programming concepts are used.

We begin by looking at existing work on analysing Scratch projects, fol‐
lowed by our own analysis.

7.6.1. Existing analyses

Aivaloglou andHermans (2016) analysed 250 000 Scratch 2.0 projects they
scraped from the public Scratch site. They looked at the types of blocks

168

7.6. Exploration of Scratch projects

used, the size of the projects, and the complexity. For the complexity, they
utilize the cyclomatic complexity metric (McCabe 1976). The considered
decision points are the if and if-else blocks.

They found that most Scratch projects are small: 75% have less than 5
sprites, 12 scripts, and 76 blocks. 25% has less than 12 blocks, although
there are some huge projects with more than 20 000 blocks. They also
found that about 78% of projects have no decision points.

Fronza et al. (2020) investigate Scratch projects with different complex‐
ity metrics. The dataset is, however, much more limited: 80 projects
were analysed. The authors also measure the cyclomatic complexity, in
addition to some Halstead complexity measures (Halstead 1977), and
their own proposal for a “when” metric. They do use more decision
points for the cyclomatic complexity (if, if-else, repeat until,
wait until, and, or). The proposed “when”metric counts the number
of “when” blocks (e.g. hat blocks with certain conditions).

7.6.2. A new dataset of Scratch 3.0 projects

Since the dataset used by Aivaloglou and Hermans (2016) consists of
Scratch 2.0 projects and Fronza et al. (2020) only analyse 80 projects, we
found it necessary to collect a new dataset of Scratch projects.

We constructed a new dataset as follows, using the Scratch website.3
Creating a new project provides an identifier (996725074, April 7th, 2024),
which we used as a starting point. We then subtract one from the iden‐
tifier, downloaded the project if possible, and continued. The oldest
project in the dataset is from April 5th, 2024, with identifier 995595608.

This resulted in 237 926 downloaded public projects (of the total 1 129 465
that were made between our newest and oldest projects). From those,
207 were corrupt or for an older version of Scratch. We also filtered out
the following projects: 37 936 (15.9%) were empty and 4411 (1.9%) had
no executable code (e.g. only head blocks or scripts without head blocks).
This results in a final dataset of 195 372 Scratch projects we considered
for further analysis.

7.6.3. Analysing Scratch 3.0 projects

Hairball (Boe et al. 2013) was commonly used to analyse Scratch projects
(it is also used by the existing analyses), but does not support Scratch 3.0.

3https://en.scratch-wiki.info/wiki/Scratch_API

There is some
discussion if the
cyclomatic
complexity is a
useful metric. It
might have no
more predictive
ability than lines
of code (Cherf
1992; Fenton and
Neil 1999; Hatton
2008).

The usefulness of
the Halstead
metrics is even
more controver‐
sial (Hamer and
Frewin 1982; Jones
2019; Shen et al.
1983).

The 1129465
projects were
created in
approximately 3
days, illustrating
Scratch’s
popularity.

169

https://en.scratch-wiki.info/wiki/Scratch_API

Chapter 7. The Scratch execution model

For this reason, we have implemented a similar tool in JavaScript (versus
Hairball s̓ use of Python).4 It also supports plugins to support extensions
for other analyses. Being written in JavaScript, it has the advantage that
it can reuse parts of the Scratch virtualmachine, like reading and parsing
Scratch projects.

Wherever possible, we have used the same definitions and metrics as
usedbyAivaloglou andHermans (2016), for ease of comparison. Whenever
a direct comparison is possible and relevant, we have included their data
in italics. For example, 75% (60%) indicates our data shows 75%, while
Aivaloglou and Hermans found 60%.

7.6.4. Use of blocks

Scratch blocks can be categorized into seven types, based on their shape
(section 7.1), their usage shown in figure 7.4. Blocks can also be put into
categories (section 4.1.1). The number of projects that use a block from
a certain category is shown in figure 7.5. Note that these numbers do not
fully compare with Aivaloglou and Hermans (2016): since then, some
new Scratch extensions were added, and the pen‐related blocks have
moved to an extension.

It is notable that extensions are not widely used: only 12.2% of projects
use any extension. The Pen extension is themost popular one, appearing
in 6.9% of the projects.

7.6.5. Size and complexity

Table 7.1 shows a summary of the project size for our dataset. In the
rest of this subsection, we detail some choices we made in analysing the
projects and draw some conclusions.

When considering the size of a program, a frequently usedmetric is lines
of code. However, there is no universal agreed‐upon manner in which
to count lines of code (Nguyen et al. 2007). Two variants are frequently
used: physical lines of code (the number of lines in the source files) and
logical lines of code (an approximation of the number of statements
or expressions). While normally counting the physical lines of code is
easy and counting logical lines requires some consideration, the reverse
is true in Scratch. To count logical lines of code, we can simply count
all blocks. For physical lines of code, we chose to count the number of

4https://github.com/scratch-ed/scratch-analysis

170

https://github.com/scratch-ed/scratch-analysis

7.6. Exploration of Scratch projects

0M 5M 10M 15M 20M

Boolean

C

Cap

Hat

Reporter

Stack

6.39

5.51

1.54

3.85

10.13

20.39

№ of blocks

Figure 7.4.Number of blocks by shape in all projects. The total number of blocks
is 47 808 628. Note that the forever block is counted twice (as a cap block and a
C block), and procedure‐defining blocks are counted as hat blocks.

Mo
tio
n

Loo
ks

Sou
nd

Eve
nts

Co
ntr

ol

Sen
sin

g

Op
era

tor
s

Da
ta

Ext
ens

ion
s

0 k

50 k

100 k

150 k

200 k

134 k
68.3%

161 k
82.4%

93 k
47.6%

195 k
99.9%

171 k
87.5%

84 k
42.9%

89 k
45.4%

68 k
34.9%

24 k
12.2%

№
of

pr
oj
ec
ts

Figure 7.5. Number of projects that use blocks from a certain category. Custom
blocks are excluded, and all blocks for extensions are counted together. Bar
colours correspond to the block category colours in the traditional Scratch 3.0
colour scheme.

171

Chapter 7. The Scratch execution model

Table 7.1. Size and complexity statistics about the 195 372 non‐empty Scratch
projects in our dataset. Unless otherwise noted, all numbers are shown per
project and blocks are counted as logical lines of code. The first column of
numbers reports the mean from Aivaloglou and Hermans (2016) if available.
The subsequent numbers are, in order, the mean and the five‐number sum‐
mary: the minimum, the first quartile, the second quartile (the median), the
third quartile, and the maximum.

Aivaloglou et al. mean min Q1 Q2 Q3 max
sprites (with code) 5.68 4.98 1 1 2 5 1000
scripts (with code) 17.35 19.73 1 2 4 11 9134
blocks (logical lines) 154.55 203.14 2 9 22 75 24 084
blocks (physical lines) n/a 150.81 2 8 20 65 20 249
dead blocks n/a 42.25 0 0 0 3 14 912
blocks per script n/a 10.30 1 2 5 10 5497
cyclomatic complexity
per script 1.58 1.85 1 1 1 2 5497

“main” blocks in a script. This means we do not count blocks used as
arguments, e.g. the condition block of a loop is not counted.

When counting the number of scripts per project, we excluded scripts
that consist only of a hat block, as these do nothing. We similarly ex‐
cluded sprites without code from the count of sprites per project. These
can have a role in some cases but are not useful in the statistics.

From these data, we can see that 75% of projects have less than 5 sprites,
11 scripts, and 80 blocks (75% of projects have less than 5 sprites, 12 scripts,
and 76 blocks). We can conclude that most Scratch projects are still small
in Scratch 3.0.

For the cyclomatic complexity, we used the same decision points as Aiva‐
loglou and Hermans. Figure 7.6 shows the distribution of the cyclomatic
complexity in the Scratch projects. Most scripts (72.6%, 78%) do not
contain any decision points. Additionally, another 15.3% (13.8%) has
just one decision point. On the other end of the spectrum, 1.6% has a
complexity larger than 10, and 667 scripts (0.000 17%, 0.000 052%) have
a complexity larger than 100.

We can conclude that most projects are small, since 75% has less than 5
sprites, 11 scripts, and 80 blocks. Most scripts (72.6%) have no decision
points.

172

7.6. Exploration of Scratch projects

1 2 3 4 5 6 7 8 9 10 11+
0M

1M

2M

3M 2.80 M

590 k

172 k 83 k 55 k 34 k 25 k 15 k 13 k 10 k 60 k

Cyclomatic complexity

№
of

sc
ri
pt
s

Figure 7.6. Distribution of scripts based on their cyclomatic complexity. Scripts
with a complexity higher than 10 have been bundled into the last bucket.

Table 7.2. Prevalence of programming concepts in Scratch projects. The third
column shows the results found by Aivaloglou and Hermans (2016) in percent‐
age if available.

Concept № of projects % Aivaloglou et al. (%)
User input blocks 90 703 46.43 56.24
Random 67 403 34.50 n/a
Conditional statements 80 664 41.29 39.81
Loop statements 151 050 77.31 77.18
Repeat with condition 28 526 14.60 13.59
Variables 67 526 34.56 31.51
Lists 18 331 9.38 4.01
Procedures 33 319 17.05 7.70

173

Chapter 7. The Scratch execution model

7.6.6. Programming concepts

Table 7.2 is an overviewof the prevalence of someprogramming concepts
in the analysed Scratch projects. While the number of projects that use
procedures (17.1%, 7.70%) is higher, it is still not used that much: a
majority of projects do not use it. Most projects do use loop statements
(77.3%, 77.18%), yet the number of projects using a conditional loop is
much smaller (14.6%, 13.59%). Less thanhalf of projects use conditional
statements (41.29%, 39.81%), and a bit less than half (46.43%, 56.24%)
use user input blocks. About a third (34.56%, 31.51%) of the projects
use variables, and only 9.38% (4.01%) uses lists. This means that a large
number of projects is simple (and this is what we would expect, given
the previous metrics on project size and complexity).

In summary, most Scratch projects are small and simple. However, big
and complex ones do exist. Scratch projects have not changed signific‐
antly since the analysis by Aivaloglou andHermans (2016), even if Scratch
3.0 was released in that period. However, this was expected: Scratch 3.0
did not introduce major changes to Scratch‐the‐programming‐language.
Themain differences are as follows: the number of complex projects and
of projects with procedures increased slightly, while user input blocks
are used a bit less.

7.7. Evaluation of the new executionmodel

To ascertain the effect of the new execution model on existing Scratch
projects, we perform and report on a preliminary benchmark. We meas‐
ure the performance and behaviour of various projects using the exist‐
ing Scratch 3.0 execution model and variations of the new execution
model.

We consider five variations of the new execution model, which differ in
how fast they run: em‐30 runs at 30 fps, em‐60 at 60 fps, em‐90 at 90 fps,
em‐120 at 120 fps, and em‐asap runs as fast as possible, meaning a new
frame is started as soon as the previous frame finishes.

7.7.1. Selection of projects

First, we differentiate between large and small projects. In the previous
analysis, we determined that 75% of projects have less than 5 sprites, 11
scripts, and 80 blocks. We thus consider projects small if they have less
than 80 blocks.

174

7.7. Evaluation of the new execution model

Secondly, we differentiate between projects with user interaction and
those without user interaction. While 46.43% of projects require user in‐
teraction, this makes those projects muchmore difficult to automatically
benchmark. We therefore only manually look at two such projects.

7.7.2. Non-interactive projects

The benchmark dataset for non‐interactive projects consists of 100 ran‐
domly chosen projects from the analysis dataset. Of those 100 projects,
75 are small projects. For these projects, we measure the number of
executed blocks. This counts the number of times every block (from
the physical lines of code, so excluding arguments) is executed. The
benchmark dataset contains both projects that end and those that do
not. Projects that do not end are, for example, those with repeat forever
blocks. For projects that end, we measure the total number of executed
blocks. Non‐ending projects are halted after 60 s, and the number of
executed blocks within that time is counted.

Figures 7.7a and 7.7b show how many projects differ in behaviour for
small and large projects respectively. Figures 7.7c and 7.7d then show
howmuch the projects differ. The results show that most projects do not
differ a lot, but there are a few outliers, particularly with the em‐asap
model, and with larger projects. In general, the em‐90 or em‐120 model
seems to provide the most similar behaviour for most projects.

However, the behaviour of the em‐asap model warrants future research.
Our initial investigation of those outlier projects did not reveal an imme‐
diate cause why the behaviour is so different. One hypothesis is that this
is due to how the models are implemented: there are some quirks with
JavaScript s̓ setTimeout function, which is what is used in the virtual
machine. An alternative implementation of the em‐asap model might
be warranted.

7.7.3. Interactive projects

Lightning project

Thefirst projectwe lookedat in detail is theLightning project (figure 7.8a).5
The aim of this game is to dodge lightning bolts coming out of the sky.
Figure 7.9a gives an overview of the behaviour with the different exe‐
cution models. The em‐30,em‐60, and em‐90 model did not achieve 10
points: they were too slow and made the game unplayable.

5https://scratch.mit.edu/projects/995927372/

175

https://scratch.mit.edu/projects/995927372/

Chapter 7. The Scratch execution model

Fewer blocks Equal blocks More blocks

30 60 90 120 asap
45
30
15
0
15
30
45

Execution models (em‐)

№
of

pr
oj
ec
ts

(a) Small projects

30 60 90 120 asap
20

10

0

10

20

Execution models (em‐)

№
of

pr
oj
ec
ts

(b) Large projects

−12M

−9M

−6M

−3M

0M

3M

№
of

bl
oc

ks

30 60 90 120 asap
Execution models (em‐)

(c) Small projects

−12M

−9M

−6M

−3M

0M

3M

№
of

bl
oc

ks

30 60 90 120 asap
Execution models (em‐)

(d) Large projects

Figure 7.7. Variants of the new execution model compared against the original
Scratch 3.0 execution model. The top figures show the number of projects
that execute more, equal, or fewer blocks than the original execution model.
The bottom figures show the difference in the number of block executions
compared to the original execution model. A negative number indicates that
fewer blocks were executed than in the original execution model.

176

7.7. Evaluation of the new execution model

score 6

Sprite Cat x 83 y -94

Size 100 Direction 90

Cat Lightning gas-kvas…

Stage

Backdrops

2

(a) The Lightning project in action. The user must
use the arrow keys to move the cat around,
avoiding the lightning bolts.

Score 6

Sprite Apple x -30 y -46

Size 85 Direction 90

Apple Bowl Line

Stage

Backdrops

2

(b) The Catch the apples project in action. The bas‐
ket follows themouse, and the usermust catch
asmany apples as possible, without any apples
falling on the ground.

Figure 7.8. Overview of the two games we discuss.

177

Chapter 7. The Scratch execution model

0 1 2 3 4 5 6 7 8 9 10

scratch 3.0
em‐asap
em‐120
em‐90
em‐60
em‐30

Execution time (s)

(a) The original implementation (see bottom left). The em‐30,em‐60, and em‐90
did not achieve 10 points.

0 1 2 3 4 5 6 7 8 9 10
scratch 3.0

em‐asap
em‐120
em‐90
em‐60
em‐30

(b) Amodified implementation (see bottom right)

when clicked

change x by 10

if key right arrow pressed? then

change x by -10

if key left arrow pressed? then

change y by 10

if key up arrow pressed? then

change y by -10

if key down arrow pressed? then

forever

(c) Original implementation of the in‐
teractive component.

when clicked

move

forever

define move

change x by 10

if … then

change x by -10

if … then

change y by 10

if … then

change y by -10

if … then

(d) Alternative implementation of the
interactive component. The four if
blocks have beenmoved to a proced‐
ure “run without screen refresh”.

Figure 7.9.Behaviour and implementation of theLightning exercisewith different
execution models. In the behaviour (top), marks represent when a new clone
is made, while vertical lines indicate when the player either lost (dashed line)
or completed 10 points (full line). The implementation (bottom) shows both
variants of the user interaction code.

178

7.7. Evaluation of the new execution model

0 1 2 3 4 5 6 7 8 9 10 11
scratch 3.0

em‐asap
em‐120
em‐90
em‐60
em‐30

Execution time (s)

Figure 7.10. Behaviour of the Catch the apples exercise with different execution
models. Marks represent score changes (or the initial score at 0), while vertical
lines indicate when the player hits 10 points.

This is due to how the interactive component is implemented (figure 7.9c).
Adjusting the implementation by wrapping the user interaction blocks
with a procedure (figure 7.9d) enabled solves this issue (figure 7.9b). This
implementation is usable with all new execution models, except em‐30,
which remains too slow.

Catch the apples project

The second project is the Catch the apples project (figure 7.8b).6 The aim
here is to use themouse tomove a basket and catch asmany falling apples
as possible. Figure 7.10 shows the behaviour with different execution
models. In this exercise, all models are playable, with em‐30 behaving
the most similar to the original Scratch execution model. Models faster
than em‐60 are likely too fast to actually play.

7.7.4. Discussion

A few conclusions can be drawn from the results of this preliminary
benchmark.

First, it is not obviously clear which variation of the execution model is
the best universal replacement. Different types of projects have different
needs. One solution for this problem would be to modify the virtual
machine to change the frames per second depending on the type of
project that is executed.

Secondly, projects depend on specific behaviour of the virtual machine.
For example, the Lightning project s̓ implementation of user interaction
only works because of how the current execution model works. While
maybe unfortunate, as there are alternatives that do not depend on this

6https://scratch.mit.edu/projects/995778768/

179

https://scratch.mit.edu/projects/995778768/

Chapter 7. The Scratch execution model

behaviour, this is a consequence of Hyrum’s Law, which states that “With
a sufficient number of users, […] all observable behaviours of your system
will be depended on by somebody”. Users, however, are already accus‐
tomed to changing the duration of wait blocks (and other such blocks)
to account for the performance of the Scratch virtual machine on their
device. While not ideal, small differences may thus be acceptable.

Lastly, this illustrates the need for more research into automated eval‐
uation of the behaviour exhibited by Scratch projects. Some areas of
interest are determining what constitutes observable behaviour and
when changes to the behaviour become adverse changes. For example,
if projects are executed a bit faster or slower, this might not affect the
project s̓ usability. The existing virtual machine is also not deterministic
and depends on system performance: some projects might execute a lot
slower on slower hardware, while still being usable.

7.8. Impact and conclusion

In chapter 6, we proposed a debugger for Scratch with a non‐traditional
step method. Instead of stepping a single block at a time, we want to
step a single block in every thread of a Scratch program (thus in every
script). However, this introduces two downsides: i) the step function
exposes internal program state that is normally not visible to the users,
and ii) the debugger uses a different executionmodel compared to regular
execution, whereas a debugger should deviate from normal execution as
little as possible.

This chapter then asks if we can modify the execution model of Scratch
in such away that the step functionality of a debugger is possible and that
the changed executionmodel is usable for normal execution. To this end,
we first took a detailed look at the existing execution model, due to a lack
of existing literature on the topic. This model is the result of multiple
years of work in the Scratch virtual machine and contains many nuances.
The current execution model has been chosen to avoid some race condi‐
tions but does not avoid all concurrency‐related issues: there are some
surprising consequences of the threading model in particular.

Any changes to the executionmodelmust not have adverse consequences
for existing Scratch projects. Therefore, we first analyse how Scratch is
used by replicating select metrics of previous investigations into what
Scratchprojects look like. Themost significant previous result in this area
is Aivaloglou and Hermans (2016), which analyses Scratch 2.0 projects.

180

7.8. Impact and conclusion

Our results for Scratch 3.0 projects are broadly similar: most Scratch
projects are small and simple, but there are a fewbig and complex ones.

Our proposed changes to the execution model change the threading
from cooperative to preemptive. This implies that more race conditions,
which the original execution model sought to prevent, are now possible.
Maloney et al. (2010) use the classic example of reading the value of a
variable, increasing this value, and finally updating the variable with the
newvalue. When running the samecodeunchanged in thenewexecution
model, more race conditions are possible. However, we believe this is
not a big problem, due to two reasons. First, the kind of code where
these race conditions can occur is used infrequently in Scratch.

Second, there is a workaround: the part of the code that must be pro‐
tected against these race conditions can be extracted into a procedure,
using the option “runwithout screen refresh”. This causes the code in the
function to become atomic: it will be run without interruptions. Using
this technique is our recommendation for implementing critical sections.
Note that using these critical sections with blocks that require a redraw
should be done thoughtfully, as the redraw will not occur (this behaves
identically in the current execution model).

Finally, we performed a preliminary benchmark using our proposed
changes on a selection of projects, informed by our previous analysis.
The results of the benchmark make clear that finding a single replace‐
ment execution model without affecting existing projects is highly un‐
likely. Projects depend on the behaviour of the current execution model,
meaning any change in behaviourwill be a breaking change. Considering
the Scratch Teams̓ (understandable) reluctance to introduce behavioural
changes to Scratch at this point, we do not envision our changes being
upstreamed, nor would we recommend it, unless as a breaking change.

While a universally applicable replacement executionmodel is not achiev‐
able, our proposed changes are still useful. For small projects, the impact
of the changes is acceptable, and most projects are small. Additionally,
the new execution model is more suitable for use with our stepping
method for debuggers. We thus envision the new execution model to be
used in classrooms where the debugger is used as well.

The results of the benchmarks are also a preliminary exploration. Our
proposed changes must still be validated in educational practice and in a
classroom setting with actual users of Scratch, in additional to perform‐
ing expanded automated benchmarks. Another area of improvement is
looking at more projects with user interaction for benchmarking. One
possible route is investigating heuristics to automatically provide suitable
user interaction to those projects, making them suitable for automated

Scratch 4.0?

181

Chapter 7. The Scratch execution model

benchmarking. Improving the benchmarking allows for a better under‐
standing on the impact of the proposed execution model.

We also see more opportunities for research on the existing and new
execution model of Scratch itself. For example, the current execution
model is defined by its source code. Constructing a formal mode of the
executionmodelwould allow formal reasoning and analysis, whichmight
reveal more opportunities for changes. This might also be beneficial in
further analysing the new model s̓ impact on existing Scratch projects.

182

Chapter 8.

Conclusions and opportunities

As an answer to the five research questions mentioned in section 1.3, we
introduced five educational tools to facilitate programming education:
two for textual programming languages and three for block‐based pro‐
gramming languages. We also propose changes to the Scratch execution
model.

We discuss each research question in detail below.

8.1. Textual programming languages

RQ1 Can we design an educational software testing framework that sup‐
ports automated assessment across programming languages based
on a single test suite?

We can, as we demonstrate by presenting our implementation of such a
testing framework: tested. First, we identified input/output testing and
unit testing as two opposing strategies commonly used in educational
software testing. Our initial investigation focused on understanding
how these approaches affect the supported programming languages
within the testing frameworks. Often, testing frameworks that fall under
input/output testing support multiple programming languages, but the
quality of the feedback suffers. On the other hand, frameworks using
unit testing have much more fine‐grained feedback, but only support a
single programming language.

Our aim was to combine the best of both worlds. To this end, we for‐
mulated the requirements for programming‐language‐agnostic testing
frameworks that combine unit testing with support formultiple program‐
ming languages. We then introduced tested, and detailed its internal
workings. Finally, we evaluated tested in educational practice to verify

183

Chapter 8. Conclusions and opportunities

that it supports our requirements for a programming‐language‐agnostic
testing framework.

We see opportunities for more work on tested in the future. Our goal is
to further develop tested for authoring different types of programming
exercises across programming languages. tested is currently focused
mainly on dynamic testing. A key area of future interest is the imple‐
mentation of language‐agnostic static code analysis capabilities.

RQ2 What is the most ergonomic way to author programming exercises
with support for automated assessment across programming lan‐
guages?

We concluded that a domain‐specific language, designed specifically for
this purpose, is the best approach. We then introduced our implementa‐
tion: tested‐dsl.

We again first looked at input/output testing and unit testing as the two
opposing strategies. However, this time, we focused more on the impact
of these strategies on the testing process itself. We considered what can
be tested and how, in addition to how and what feedback is generated.
For example, we considered if input/output testing and unit testing each
needed a separate domain‐specific language, or if we could merge them
into one common one (we did merge them).

The conclusionwas again that the best of both strategies provides the best
experience for educators. Looking at programming‐language‐agnostic
testing frameworks more broadly, we reported on three benefits for the
adoption of such frameworks: i) sharing the same declarative structure
across programming languages, ii) bridging the gap between input/out‐
put testing and unit testing, and iii) allowing test code to be expressed in
a language‐agnostic way.

We also see potential for additions to tested‐dsl in the future. These
include supporting operator overloading, string conversion, comments,
indexing sequences, indexing mappings, destructuring, object identity
checking, and object equivalence checking. Native support for pretty
printing nested data structures would be another valuable addition, mak‐
ing it easier to detect differences between expected and actual return
values. There are more opportunities still, including data‐driven tests
(parameterized tests), supporting dynamic generation of test data and
boosting the performance of running tests.

184

8.2. Block‐based programming languages

8.2. Block-based programming languages

RQ3 Can we design an educational software testing framework for the
block‐based programming language Scratch?

Yes, as shown by our implementation of such a framework: Itch. We
showed that it offers a versatile approach to testing, allowing static testing,
emulating user interaction, and performing post‐mortem testing. Tests
can range from purely static to purely dynamic, or a hybrid of both.

However, we also reported that while most exercises can be tested, it
remains difficult to design Scratch exercises that are both dynamically
testable and sufficiently open‐ended to align with the game‐like and
exploratory nature of Scratch. Static tests, though faster and sometimes
easier to write, can potentially constrain creativity and go against the
spirit of Scratch.

We also found that educators that are primarily experienced in Scratch
might find JavaScript test suites difficult to write. For this reason, we
created and reported on a prototype of a Scratch‐based testing framework
called Poke. It allows creating test suites with Scratch, using the blocks
and environment Scratch users are familiar with. While writing the tests
is technically feasible, some challenges remain, the main one being the
organizational aspects of managing these Scratch tests suites.

RQ4 Can we design an (educational) debugger for the block‐based pro‐
gramming language Scratch?

Yes: Blink is our time‐travelling debugger for Scratch. Working with Itch
in an educational setting made clear that testing frameworks primarily
indicate whether a submission is correct or not, but do not directly assist
students in finding the root cause of a failed test.

To address this, we developed Blink, a debugger for Scratch. Debuggers
are generally known to be good tools for finding errors in a program, and
this is no different in Scratch. Blink supports pausing execution, stepping
through code, breakpoints, and provides time travel capabilities. We
prioritized the user‐friendliness of Blink, given Scratchs̓ younger target
audience. Due to the concurrent nature of Scratch, we had to hide a lot of
the complexities of concurrent debugging for the user. Initial feedback
from using Blink in a classroom setting has been positive: students
find the debugger intuitive and useful, especially the time‐travelling
capability.

In the future, we envision integrating ItchwithBlink. In an ideal scenario,
a failed test from Itch would allow students to directly open a debugging

185

Chapter 8. Conclusions and opportunities

session when the test failed. Using the time‐travelling features of Blink,
students can then go back in time until they find the issue.

RQ5 What common executionmodel for running and debugging Scratch
code best optimizes both scenarios?

One of the ways we sought to make the debugger more intuitive was to
use a non‐traditional stepping functionality. In most debuggers, a step
will advance the code one step in a single thread. However, in Scratch,
we wanted the step to advance one step in all threads simultaneously.
The current execution model makes this difficult.

To answer this research question, we first explained in detail how the
current execution model behaves. The current execution model has
been chosen to minimize the occurrence of some concurrency‐related
issues, like certain race conditions, but does not prevent all issues. The
threading model, in particular, causes some surprising behaviour, which
is not ideal as Scratch is intended to be intuitive.

Next, we proposed changes to the execution model of Scratch that seek
to resolve these issues. However, the widespread use of Scratch demands
that any changes must not adversely affect existing projects. For this
reason, we explored how Scratch is used, the results ofwhich corroborate
previous findings: most Scratch projects are small.

We then performed a preliminary benchmark of the new execution
model on various representative projects to measure the real‐world im‐
pact. The results of this benchmark make clear that our initial goal of
finding a replacement execution model that has no effect on existing
projects is not attainable. Projects rely too much on the behaviour of
the original execution model: any change to this behaviour will be a
breaking change. However, the benchmark also showed that the effect
on smaller projects is acceptable, and most Scratch projects are small.
We thus believe the new execution model to still be useful: not as a gen‐
eral replacement, but for use in specific contexts. For example, in a
classroom setting, we believe using the new execution model improves
the experience of using the debugger.

Finally, we believe more research is needed in regard to the execution
model of Scratch. For starters, the execution model is currently defined
by its source code, despite some attempts to create a formal model for it.
As an example, constructing full operational semantics for the execution
model would allow better formal reasoning and analysis, whichmight re‐
veal more opportunities for changes. Secondly, the changes we proposed
in this chapter should be validated experimentally in a classroom setting.
This would allow verification if the proposed changes are intuitive.

186

Bibliography
Agrawal, A. and B. Reed (Nov. 2022). “A Survey on Grading Format of Automated Grading

Tools for Programming Assignments”. In: International Conference of Education, Research
and Innovation Proceedings. Seville, Spain: IATED, pp. 7506–7514. isbn: 978‐84‐09‐45476‐1.
doi: 10.21125/iceri.2022.1912.

Aivaloglou, E. and F. Hermans (Aug. 2016). “How Kids Code and How We Know: An
Exploratory Study on the Scratch Repository”. In: Proceedings of the 2016 ACM Conference
on International Computing Education Research. Melbourne, Australia: ACM, pp. 53–61.
isbn: 978‐1‐4503‐4449‐4. doi: 10.1145/2960310.2960325.

Ala‐Mutka, K.M. (June 2005). “A Survey ofAutomatedAssessmentApproaches for Program‐
ming Assignments”. In: Computer Science Education 15.2, pp. 83–102. issn: 0899‐3408.
doi: 10.1080/08993400500150747.

AlOmar, E. A., S. A. AlOmar and M.W. Mkaouer (May 2023). “On the Use of Static Ana‐
lysis to Engage Students with Software Quality Improvement: An Experience with
PMD”. In: 2023 IEEE/ACM 45th International Conference on Software Engineering: Software
Engineering Education and Training. Melbourne, Australia: IEEE, pp. 179–191. isbn:
9798350322590. doi: 10.1109/ICSE-SEET58685.2023.00023.

Ammann, P. and J. Offutt (Dec. 2016). Introduction to Software Testing. 2nd ed. Cambridge
University Press. isbn: 978‐1‐107‐17201‐2. doi: 10.1017/9781316771273.

Atchison, W. F. (Apr. 1971). “Computer Science as a New Discipline”. In: The Interna‐
tional Journal of Electrical Engineering & Education 9.2, pp. 130–135. doi: 10.1177/
002072097100900209.

Balanskat, A. and K. Engelhardt (Oct. 2015). Computing Our Future. Computer Program‐
ming and Coding Priorities, School Curricula and Initiatives across Europe. Brussels, Bel‐
gium: European Schoolnet, p. 45. url: http://www.eun.org/news/detail?
articleId=652951.

Ball, T., A. Chatra, P. deHalleux, S. Hodges,M.Moskal and J. Russell (Oct. 2019). “Microsoft
MakeCode: Embedded Programming for Education, in Blocks and TypeScript”. In:
Proceedings of the 2019 ACM SIGPLAN Symposium on SPLASH‐E. Athens, Greece: ACM,
pp. 7–12. isbn: 978‐1‐4503‐6989‐3. doi: 10.1145/3358711.3361630.

Balzer, R. M. (May 1969). “EXDAMS: Extendable Debugging and Monitoring System”. In:
Proceedings of the May 14‐16, 1969, Spring Joint Computer Conference (AFIPS ’69). Boston,
USA: ACM, pp. 567–580. isbn: 978‐1‐4503‐7902‐1. doi: 10.1145/1476793.1476881.

Barr, E. T. and M. Marron (Dec. 2014). “Tardis: Affordable Time‐Travel Debugging in
Managed Runtimes”. In: ACM SIGPLAN Notices 49.10, pp. 67–82. issn: 0362‐1340, 1558‐
1160. doi: 10.1145/2714064.2660209.

Barr, E. T., M. Marron, E. Maurer, D. Moseley and G. Seth (Nov. 2016). “Time‐Travel
Debugging for JavaScript/Node.Js”. In: Proceedings of the 2016 24th ACM SIGSOFT Inter‐
national Symposium on Foundations of Software Engineering. Seattle, USA: ACM, pp. 1003–
1007. isbn: 978‐1‐4503‐4218‐6. doi: 10.1145/2950290.2983933.

187

https://doi.org/10.21125/iceri.2022.1912
https://doi.org/10.1145/2960310.2960325
https://doi.org/10.1080/08993400500150747
https://doi.org/10.1109/ICSE-SEET58685.2023.00023
https://doi.org/10.1017/9781316771273
https://doi.org/10.1177/002072097100900209
https://doi.org/10.1177/002072097100900209
http://www.eun.org/news/detail?articleId=652951
http://www.eun.org/news/detail?articleId=652951
https://doi.org/10.1145/3358711.3361630
https://doi.org/10.1145/1476793.1476881
https://doi.org/10.1145/2714064.2660209
https://doi.org/10.1145/2950290.2983933

Bibliography

Bass, L., P. Clements andR.Kazman (2021). SoftwareArchitecture in Practice. 4th ed. Addison‐
Wesley Professional. isbn: 978‐0‐13‐688567‐2.

Bau, D., J. Gray, C. Kelleher, J. Sheldon and F. Turbak (May 2017). “Learnable Programming:
Blocks and Beyond”. In: Communications of the ACM 60.6, pp. 72–80. issn: 0001‐0782.
doi: 10.1145/3015455.

Beck, K. (1997). “Simple Smalltalk Testing”. In: Kent Beck’s Guide to Better Smalltalk: A Sorted
Collection. Cambridge, UK: Cambridge University Press, pp. 277–288. isbn: 978‐0‐511‐
57497‐9. doi: 10.1017/CBO9780511574979.

Bejaković, P. and Ž. Mrnjavac (Apr. 2020). “The Importance of Digital Literacy on the
Labour Market”. In: Employee Relations: The International Journal 42.4, pp. 921–932. issn:
0142‐5455. doi: 10.1108/ER-07-2019-0274.

Ben‐Kiki, O., T. Müller, I. döt Net, P. Antoniou, E. Aro, T. Smith and C. C. Evans (Oct. 2021).
YAML Ain’t Markup Language. url: https://yaml.org/spec/1.2.2/.

Berssanette, J. H. and A. C. de Francisco (2021). “Active Learning in the Context of the
Teaching/Learning of Computer Programming: A Systematic Review”. In: Journal of
Information Technology Education: Research 20, pp. 201–220. issn: 1547‐9714, 1539‐3585.
doi: 10.28945/4767.

Bettini, L., P. Crescenzi, G. Innocenti, M. Loreti and L. Cecchi (2004). “An Environment for
Self‐Assessing Java Programming Skills in Undergraduate First Programming Courses”.
In: IEEE International Conference on Advanced Learning Technologies, 2004. Proceedings.
Joensuu, Finland: IEEE, pp. 161–165. isbn: 978‐0‐7695‐2181‐7. doi: 10.1109/ICALT.
2004.1357395.

Bez, J. L., N. A. Tonin and P. R. Rodegheri (Aug. 2014). “URI Online Judge Academic: A
Tool for Algorithms and Programming Classes”. In: 2014 9th International Conference on
Computer Science & Education. Vancouver, Canada: IEEE, pp. 161–165. isbn: 978‐1‐4799‐
2951‐1. doi: 10.1109/iccse.2014.6926445.

Bissyande, T. F., F. Thung, D. Lo, L. Jiang and L. Reveillere (July 2013). “Popularity, Inter‐
operability, and Impact of Programming Languages in 100,000 Open Source Projects”.
In: 2013 IEEE 37th Annual Computer Software and Applications Conference. Kyoto, Japan:
IEEE, pp. 303–312. isbn: 978‐0‐7695‐4986‐6. doi: 10.1109/COMPSAC.2013.55.

Black, P. and D.Wiliam (Feb. 2009). “Developing the Theory of Formative Assessment”. In:
Educational Assessment, Evaluation and Accountability 21.1, pp. 5–31. issn: 1874‐8597.
doi: 10.1007/s11092-008-9068-5.

Boe, B., C. Hill, M. Len, G. Dreschler, P. Conrad and D. Franklin (Mar. 2013). “Hairball:
Lint‐inspired Static Analysis of Scratch Projects”. In: SIGCSE ’13: Proceeding of the 44th
ACM Technical Symposium on Computer Science Education. Denver, USA: ACM, pp. 215–
220. isbn: 978‐1‐4503‐1868‐6. doi: 10.1145/2445196.2445265.

Booker, A. R. (July 2019). “Cracking the Problem with 33”. In: Research in Number Theory
5.3, p. 26. issn: 2363‐9555. doi: 10.1007/s40993-019-0162-1.

Bunce, T. (Apr. 2008). TIOBE or Not TIOBE – “Lies, Damned Lies, and Statistics”. Not this...
url: https://blog.timbunce.org/2008/04/12/tiobe-or-not-tiobe-lies-
damned-lies-and-statistics/.

Bunce, T. (May 2009). TIOBE Index Is Being Gamed. Not this... url: https://blog.
timbunce.org/2009/05/17/tiobe-index-is-being-gamed/.

Caiza, J. C. and J. M. del Alamo (2013). “Programming Assignments Automatic Grad‐
ing: Review of Tools and Implementations”. In: INTED2013 Proceedings. 7th Interna‐
tional Technology, Education and Development Conference. Valencia, Spain: IATED,

188

https://doi.org/10.1145/3015455
https://doi.org/10.1017/CBO9780511574979
https://doi.org/10.1108/ER-07-2019-0274
https://yaml.org/spec/1.2.2/
https://doi.org/10.28945/4767
https://doi.org/10.1109/ICALT.2004.1357395
https://doi.org/10.1109/ICALT.2004.1357395
https://doi.org/10.1109/iccse.2014.6926445
https://doi.org/10.1109/COMPSAC.2013.55
https://doi.org/10.1007/s11092-008-9068-5
https://doi.org/10.1145/2445196.2445265
https://doi.org/10.1007/s40993-019-0162-1
https://blog.timbunce.org/2008/04/12/tiobe-or-not-tiobe-lies-damned-lies-and-statistics/
https://blog.timbunce.org/2008/04/12/tiobe-or-not-tiobe-lies-damned-lies-and-statistics/
https://blog.timbunce.org/2009/05/17/tiobe-index-is-being-gamed/
https://blog.timbunce.org/2009/05/17/tiobe-index-is-being-gamed/

pp. 5691–5700. isbn: 978‐84‐616‐2661‐8. url: https://library.iated.org/view/
CAIZA2013PRO.

Camp, T., W. R. Adrion, B. Bizot, S. Davidson, M. Hall, S. Hambrusch, E. Walker and S.
Zweben (May 2017). “Generation CS: The Growth of Computer Science”. In:ACM Inroads
8.2, pp. 44–50. issn: 2153‐2184. doi: 10.1145/3084362.

Campos, D. S., A. J. Mendes, M. J. Marcelino, D. J. Ferreira and L. M. Alves (Oct. 2012). “A
Multinational Case Study on Using Diverse Feedback Types Applied to Introductory
Programming Learning”. In: 2012 Frontiers in Education Conference Proceedings. Seattle,
USA: IEEE, pp. 1–6. isbn: 978‐1‐4673‐1351‐3. doi: 10.1109/FIE.2012.6462412.

Cattoire, H., P. Dawyndt, C. Scholliers and N. Strijbol (2024). “Een nieuw uitvoeringsmodel
voor Scratch 3.0”. MA thesis. Universiteit Gent.

Cavalcanti, A. P., A. Barbosa, R. Carvalho, F. Freitas, Y.‐S. Tsai, D. Gašević and R. F. Mello
(2021). “Automatic Feedback in Online Learning Environments: A Systematic Literature
Review”. In: Computers and Education: Artificial Intelligence 2, p. 100027. issn: 2666920X.
doi: 10.1016/j.caeai.2021.100027.

Cheang, B., A. Kurnia, A. Lim and W.‐C. Oon (Sept. 2003). “On Automated Grading of
Programming Assignments in an Academic Institution”. In: Computers & Education 41.2,
pp. 121–131. issn: 03601315. doi: 10.1016/S0360-1315(03)00030-7.

Chen, S.‐K.,W. K. Fuchs and J.‐Y. Chung (Aug. 2001). “Reversible DebuggingUsing Program
Instrumentation”. In: IEEE Transactions on Software Engineering 27.8, pp. 715–727. issn:
0098‐5589. doi: 10.1109/32.940726.

Cherf, G. S. (Sept. 1992). “An Investigation of the Maintenance and Support Characteristics
of Commercial Software”. In: Software Quality Journal 1.3, pp. 147–158. issn: 0963‐9314,
1573‐1367. doi: 10.1007/BF01720922.

Chung, M. J.‐Y., M. Nakura, S. H. Neti, A. Lu, E. Hummel and M. Cakmak (Aug. 2020).
“ConCodeIt! A Comparison of Concurrency Interfaces in Block‐Based Visual Robot Pro‐
gramming”. In: 2020 29th IEEE International Conference on Robot and Human Interactive
Communication (RO‐MAN). Naples, Italy: IEEE, pp. 245–252. isbn: 978‐1‐72816‐075‐7.
doi: 10.1109/RO-MAN47096.2020.9223337.

Combéfis, S. (Feb. 2022). “Automated Code Assessment for Education: Review, Classi‐
fication and Perspectives on Techniques and Tools”. In: Software 1.1, pp. 3–30. issn:
2674‐113X. doi: 10.3390/software1010002.

Crescenzi, P., C. Demetrescu, I. Finocchi and R. Petreschi (2000). “Reversible Execution
and Visualization of Programs with LEONARDO”. In: Journal of Visual Languages &
Computing 11.2, pp. 125–150. issn: 1045‐926X. doi: 10.1006/jvlc.1999.0143.

Czaplicki, E. and S. Chong (June 2013). “Asynchronous Functional Reactive Programming
for GUIs”. In: Proceedings of the 34th ACM SIGPLAN Conference on Programming Language
Design and Implementation. Seattle, USA: ACM, pp. 411–422. isbn: 978‐1‐4503‐2014‐6.
doi: 10.1145/2491956.2462161.

De Proft, R., P. Dawyndt, C. Scholliers and N. Strijbol (2022). “Blink: een educatieve
software‐debugger voor Scratch 3.0”. MA thesis. Universiteit Gent. url: http://
lib.ugent.be/catalog/rug01:003059967.

Deiner, A., P. Feldmeier, G. Fraser, S. Schweikl andW.Wang (May 2023). “Automated Test
Generation for Scratch Programs”. In: Empirical Software Engineering 28.3, p. 79. issn:
1382‐3256, 1573‐7616. doi: 10.1007/s10664-022-10255-x.

Deiner, A., C. Frädrich, G. Fraser, S. Geserer and N. Zantner (Oct. 2020). “Search‐Based
Testing for Scratch Programs”. In: Proceedings of the 12th International Symposium on

189

https://library.iated.org/view/CAIZA2013PRO
https://library.iated.org/view/CAIZA2013PRO
https://doi.org/10.1145/3084362
https://doi.org/10.1109/FIE.2012.6462412
https://doi.org/10.1016/j.caeai.2021.100027
https://doi.org/10.1016/S0360-1315(03)00030-7
https://doi.org/10.1109/32.940726
https://doi.org/10.1007/BF01720922
https://doi.org/10.1109/RO-MAN47096.2020.9223337
https://doi.org/10.3390/software1010002
https://doi.org/10.1006/jvlc.1999.0143
https://doi.org/10.1145/2491956.2462161
http://lib.ugent.be/catalog/rug01:003059967
http://lib.ugent.be/catalog/rug01:003059967
https://doi.org/10.1007/s10664-022-10255-x

Bibliography

Search‐Based Software Engineering. Ed. byA. Aleti andA. Panichella.Vol. 12420. Bari, Italy:
Springer, pp. 58–72. isbn: 978‐3‐030‐59762‐7. doi: 10.1007/978-3-030-59762-7_5.

Deiner, A. and G. Fraser (Feb. 2024). “NuzzleBug: Debugging Block‐Based Programs in
Scratch”. In: Proceedings of the 46th IEEE/ACM International Conference on Software Engin‐
eering. Lisbon, Portugal: ACM, pp. 1–13. isbn: 9798400702174. doi: 10.1145/3597503.
3623331.

Denning, P. J. (May 2013). “The Science in Computer Science”. In: Communications of the
ACM 56.5, pp. 35–38. issn: 0001‐0782, 1557‐7317. doi: 10.1145/2447976.2447988.

De Souza, D. M., K. R. Felizardo and E. F. Barbosa (Apr. 2016). “A Systematic Literature
Review of Assessment Tools for Programming Assignments”. In: 2016 IEEE 29th Inter‐
national Conference on Software Engineering Education and Training (CSEET). Dallas, USA:
IEEE, pp. 147–156. isbn: 978‐1‐5090‐0766‐0. doi: 10.1109/CSEET.2016.48.

Douce, C., D. Livingstone and J. Orwell (Sept. 2005). “Automatic Test‐Based Assessment of
Programming: A Review”. In: Journal on Educational Resources in Computing 5.3, p. 4.
issn: 1531‐4278, 1531‐4278. doi: 10.1145/1163405.1163409.

Edwards, S. H. (Mar. 2004). “Using Software Testing to Move Students from Trial‐and‐Error
to Reflection‐in‐Action”. In: ACM SIGCSE Bulletin 36.1, pp. 26–30. issn: 0097‐8418. doi:
10.1145/971300.971312.

Edwards, S. H., J. Börstler, L. N. Cassel, M. S. Hall and J. Hollingsworth (Nov. 2008). “De‐
veloping a Common Format for Sharing Programming Assignments”. In: ACM SIGCSE
Bulletin 40.4, pp. 167–182. issn: 0097‐8418. doi: 10.1145/1473195.1473240.

Ellsworth, C. C., J. B. Fenwick and B. L. Kurtz (Mar. 2004). “The Quiver System”. In: ACM
SIGCSE Bulletin 36.1, pp. 205–209. issn: 0097‐8418. doi: 10.1145/1028174.971374.

Enstrom, E., G. Kreitz, F. Niemela, P. Soderman and V. Kann (Oct. 2011). “Five Years with
Kattis — Using an Automated Assessment System in Teaching”. In: 2011 Frontiers in
Education Conference (FIE). Rapid City, USA: IEEE, T3J‐1‐T3J–6. isbn: 978‐1‐61284‐467‐1.
doi: 10.1109/FIE.2011.6142931.

Fatourou, E., N. C. Zygouris, T. Loukopoulos and G. I. Stamoulis (June 2018). “Teaching
Concurrent Programming Concepts Using Scratch in Primary School: Methodology
and Evaluation”. In: International Journal of Engineering Pedagogy (iJEP) 8.4, p. 89. issn:
2192‐4880. doi: 10.3991/ijep.v8i4.8216.

Fenton, N. E. and M. Neil (1999). “A Critique of Software Defect Prediction Models”. In:
IEEE Transactions on Software Engineering 25.5, pp. 675–689. issn: 00985589. doi: 10.
1109/32.815326.

Fonte, D., D. da Cruz, A. L. Gançarski and P. R. Henriques (June 2013). “A Flexible Dynamic
System for Automatic Grading of Programming Exercises”. In: 2nd Symposium on Lan‐
guages, Applications and Technologies. Ed. by J. P. Leal, R. Rocha and A. Simões. Vol. 29.
OpenAccess Series in Informatics (OASIcs). Porto, Portugal: Schloss Dagstuhl–Leibniz‐
Zentrum fuer Informatik, pp. 129–144. isbn: 978‐3‐939897‐52‐1. doi: 10.4230/OASIcs.
SLATE.2013.129.

Frädrich, C., F. Obermüller, N. Körber, U. Heuer and G. Fraser (June 2020). “Common
Bugs in Scratch Programs”. In: Proceedings of the 2020 ACM Conference on Innovation and
Technology in Computer Science Education. Trondheim, Norway: ACM, pp. 89–95. isbn:
978‐1‐4503‐6874‐2. doi: 10.1145/3341525.3387389.

Fraser, G., U. Heuer, N. Körber, F. Obermüller and E.Wasmeier (May 2021). “LitterBox:
A Linter for Scratch Programs”. In: 2021 IEEE/ACM 43rd International Conference on

190

https://doi.org/10.1007/978-3-030-59762-7_5
https://doi.org/10.1145/3597503.3623331
https://doi.org/10.1145/3597503.3623331
https://doi.org/10.1145/2447976.2447988
https://doi.org/10.1109/CSEET.2016.48
https://doi.org/10.1145/1163405.1163409
https://doi.org/10.1145/971300.971312
https://doi.org/10.1145/1473195.1473240
https://doi.org/10.1145/1028174.971374
https://doi.org/10.1109/FIE.2011.6142931
https://doi.org/10.3991/ijep.v8i4.8216
https://doi.org/10.1109/32.815326
https://doi.org/10.1109/32.815326
https://doi.org/10.4230/OASIcs.SLATE.2013.129
https://doi.org/10.4230/OASIcs.SLATE.2013.129
https://doi.org/10.1145/3341525.3387389

Software Engineering: Software Engineering Education and Training. Madrid, Spain: IEEE,
pp. 183–188. isbn: 978‐1‐66540‐138‐8. doi: 10.1109/ICSE-SEET52601.2021.00028.

Fronza, I., L. Corral and C. Pahl (Mar. 2020). “An Approach to Evaluate the Complexity
of Block‐Based Software Product”. In: Informatics in Education 19.1, pp. 15–32. issn:
1648‐5831, 2335‐8971. doi: 10.15388/infedu.2020.02.

Goethals, K., P. Dawyndt, C. Scholliers and N. Strijbol (2023). “Een Time Travelling De‐
bugger Voor Scratch 3.0”. MA thesis. Universiteit Gent. url: http://lib.ugent.be/
catalog/rug01:003150086.

Gomes, A. and A. J. Mendes (June 2007). “An Environment to Improve Programming
Education”. In: Proceedings of the 2007 International Conference on Computer Systems
and Technologies. Ruse, Bulgaria: ACM, p. 1. isbn: 978‐954‐9641‐50‐9. doi: 10.1145/
1330598.1330691.

Gorn, S. (Apr. 1963). “The Computer and Information Sciences: A New Basic Discipline”.
In: SIAM Review 5.2, pp. 150–155. issn: 0036‐1445, 1095‐7200. doi: 10.1137/1005036.

Gotz, K., P. Feldmeier andG. Fraser (Apr. 2022). “Model‐BasedTesting of Scratch Programs”.
In: 2022 IEEE Conference on Software Testing, Verification and Validation (ICST). Valencia,
Spain: IEEE, pp. 411–421. isbn: 978‐1‐66546‐679‐0. doi: 10.1109/ICST53961.2022.
00047.

Gulwani, S., I. Radiček and F. Zuleger (Nov. 2014). “Feedback Generation for Performance
Problems in Introductory Programming Assignments”. In: Proceedings of the 22nd ACM
SIGSOFT International Symposium on Foundations of Software Engineering. Hong Kong,
China: ACM, pp. 41–51. isbn: 978‐1‐4503‐3056‐5. doi: 10.1145/2635868.2635912.

Gupta, S. K. and B. B. Gupta (Jan. 2017). “Cross‐Site Scripting (XSS) Attacks and Defense
Mechanisms: Classification and State‐of‐the‐Art”. In: International Journal of System
Assurance Engineering and Management 8.S1, pp. 512–530. issn: 0975‐6809, 0976‐4348.
doi: 10.1007/s13198-015-0376-0.

Gusukuma, L., A. C. Bart and D. Kafura (Feb. 2020). “Pedal: An Infrastructure for Auto‐
mated Feedback Systems”. In: Proceedings of the 51st ACM Technical Symposium on Com‐
puter Science Education. Portland, USA: ACM, pp. 1061–1067. isbn: 978‐1‐4503‐6793‐6.
doi: 10.1145/3328778.3366913.

Halstead, M. H. (1977). Elements of Software Science (Operating and Programming Systems
Series). USA: Elsevier. isbn: 0‐444‐00205‐7.

Hamer, P. G. and G. D. Frewin (Sept. 1982). “M.H. Halsteads̓ Software Science ‐ a Critical
Examination”. In: Proceedings of the 6th International Conference on Software Engineering.
Tokyo, Japan: IEEE, pp. 197–206. url: https://dl.acm.org/doi/10.5555/
800254.807762.

Hao, Q., D. H. Smith IV, L. Ding, A. Ko, C. Ottaway, J. Wilson, K. H. Arakawa, A. Turcan,
T. Poehlman and T. Greer (Jan. 2021). “Towards Understanding the Effective Design of
Automated Formative Feedback for Programming Assignments”. In: Computer Science
Education, pp. 1–23. issn: 0899‐3408. doi: 10.1080/08993408.2020.1860408.

Hattie, J. and H. Timperley (Mar. 2007). “The Power of Feedback”. In: Review of Educational
Research 77.1, pp. 81–112. issn: 0034‐6543. doi: 10.3102/003465430298487.

Hatton, L. (Aug. 2008). “Invited Talk: The Role of Empiricism in Improving the Reliability
of Future Software”. In: Testing: Academic & Industrial Conference ‐ Practice and Research
Techniques (Taic Part 2008).Windsor, UK: IEEE. isbn: 978‐0‐7695‐3383‐4. doi: 10.1109/
TAIC-PART.2008.21.

191

https://doi.org/10.1109/ICSE-SEET52601.2021.00028
https://doi.org/10.15388/infedu.2020.02
http://lib.ugent.be/catalog/rug01:003150086
http://lib.ugent.be/catalog/rug01:003150086
https://doi.org/10.1145/1330598.1330691
https://doi.org/10.1145/1330598.1330691
https://doi.org/10.1137/1005036
https://doi.org/10.1109/ICST53961.2022.00047
https://doi.org/10.1109/ICST53961.2022.00047
https://doi.org/10.1145/2635868.2635912
https://doi.org/10.1007/s13198-015-0376-0
https://doi.org/10.1145/3328778.3366913
https://dl.acm.org/doi/10.5555/800254.807762
https://dl.acm.org/doi/10.5555/800254.807762
https://doi.org/10.1080/08993408.2020.1860408
https://doi.org/10.3102/003465430298487
https://doi.org/10.1109/TAIC-PART.2008.21
https://doi.org/10.1109/TAIC-PART.2008.21

Bibliography

Hermans, F. and E. Aivaloglou (May 2016). “Do Code Smells Hamper Novice Program‐
ming? A Controlled Experiment on Scratch Programs”. In: 2016 IEEE 24th International
Conference on Program Comprehension (ICPC). Austin, USA: IEEE, pp. 1–10. isbn: 978‐1‐
5090‐1428‐6. doi: 10.1109/ICPC.2016.7503706.

Hetzel, B. (Apr. 1988). The Complete Guide to Software Testing. 2nd ed. USA: QED Information
Sciences. 280 pp. isbn: 978‐0‐89435‐242‐3. url: https://dl.acm.org/doi/book/
10.5555/42384.

Hext, J. B. and J. W. Winings (May 1969). “An Automatic Grading Scheme for Simple
Programming Exercises”. In: Communications of the ACM 12.5, pp. 272–275. issn: 0001‐
0782, 1557‐7317. doi: 10.1145/362946.362981.

Hidalgo‐Céspedes, J. (Oct. 2023). “Evaluation of an Online Judge for Concurrent Pro‐
gramming Learning”. In: 2023 XLIX Latin American Computer Conference (CLEI). La
Paz, Bolivia: IEEE, pp. 1–9. isbn: 9798350318876. doi: 10.1109/CLEI60451.2023.
10346201.

Higgins, C., T. Hegazy, P. Symeonidis and A. Tsintsifas (Sept. 2003). “The CourseMarker
CBA System: Improvements over Ceilidh”. In: Education and Information Technologies
8.3, pp. 287–304. issn: 1573‐7608. doi: 10.1023/A:1026364126982.

Hollingsworth, J. (Oct. 1960). “Automatic Graders for Programming Classes”. In: Com‐
munications of the ACM 3.10, pp. 528–529. issn: 0001‐0782, 1557‐7317. doi: 10.1145/
367415.367422.

Hopcroft, J. E. (1987). “Computer Science: The Emergence of a Discipline”. In: ACM Turing
Award Lectures. New York, NY, USA: ACM. isbn: 978‐1‐4503‐1049‐9. doi: 10.1145/
1283920.1283943.

Howden,W. E. (July 1978). “Theoretical and Empirical Studies of Program Testing”. In:
IEEE Transactions on Software Engineering SE‐4.4, pp. 293–298. issn: 0098‐5589. doi:
10.1109/TSE.1978.231514.

Hromkovič, J. and J. Staub (2021). “The Problem with Debugging in Current Block‐Based
Programming Environments”. In: Bulletin of the EATCS 135.3. url: http://smtp.
eatcs.org/index.php/beatcs/article/view/667.

ICPC Fact Sheet (2023). ICPC. url: https://icpc.global/worldfinals/fact-
sheet/ICPC-Fact-Sheet.pdf.

Ihantola, P., T. Ahoniemi, V. Karavirta and O. Seppälä (Oct. 2010). “Review of Recent
Systems for Automatic Assessment of Programming Assignments”. In: Proceedings of the
10th Koli Calling International Conference on Computing Education Research. Koli, Finland:
ACM, pp. 86–93. isbn: 978‐1‐4503‐0520‐4. doi: 10.1145/1930464.1930480.

Johnson, D. E. (Feb. 2016). “ITCH: Individual Testing of Computer Homework for Scratch
Assignments”. In: Proceedings of the 47th ACM Technical Symposium on Computing Science
Education. Memphis, USA: ACM, pp. 223–227. isbn: 978‐1‐4503‐3685‐7. doi: 10.1145/
2839509.2844600.

Jones, D. (Apr. 2019). Dimensional Analysis of the Halstead Metrics. The Shape of Code. url:
https://shape-of-code.com/2019/04/25/dimensional-analysis-of-
the-halstead-metrics/.

Kelleher, C. and R. Pausch (June 2005). “Lowering the Barriers to Programming: A Tax‐
onomy of Programming Environments and Languages for Novice Programmers”. In:
ACM Computing Surveys 37.2, pp. 83–137. issn: 0360‐0300, 1557‐7341. doi: 10.1145/
1089733.1089734.

192

https://doi.org/10.1109/ICPC.2016.7503706
https://dl.acm.org/doi/book/10.5555/42384
https://dl.acm.org/doi/book/10.5555/42384
https://doi.org/10.1145/362946.362981
https://doi.org/10.1109/CLEI60451.2023.10346201
https://doi.org/10.1109/CLEI60451.2023.10346201
https://doi.org/10.1023/A:1026364126982
https://doi.org/10.1145/367415.367422
https://doi.org/10.1145/367415.367422
https://doi.org/10.1145/1283920.1283943
https://doi.org/10.1145/1283920.1283943
https://doi.org/10.1109/TSE.1978.231514
http://smtp.eatcs.org/index.php/beatcs/article/view/667
http://smtp.eatcs.org/index.php/beatcs/article/view/667
https://icpc.global/worldfinals/fact-sheet/ICPC-Fact-Sheet.pdf
https://icpc.global/worldfinals/fact-sheet/ICPC-Fact-Sheet.pdf
https://doi.org/10.1145/1930464.1930480
https://doi.org/10.1145/2839509.2844600
https://doi.org/10.1145/2839509.2844600
https://shape-of-code.com/2019/04/25/dimensional-analysis-of-the-halstead-metrics/
https://shape-of-code.com/2019/04/25/dimensional-analysis-of-the-halstead-metrics/
https://doi.org/10.1145/1089733.1089734
https://doi.org/10.1145/1089733.1089734

Keuning, H., J. Jeuring and B. Heeren (Sept. 2018). “A Systematic Literature Review of
Automated Feedback Generation for Programming Exercises”. In: ACM Transactions on
Computing Education 19.1, pp. 1–43. doi: 10.1145/3231711.

Khorram, F. (Dec. 2022). “A Testing Framework for Executable Domain‐Specific Lan‐
guages”. PhD thesis. Ecole nationale supérieureMines‐TélécomAtlantique. url:https:
//theses.hal.science/tel-03977604.

Kim, C., J. Yuan, L. Vasconcelos, M. Shin and R. B. Hill (Oct. 2018). “Debugging during
Block‐Based Programming”. In: Instructional Science 46.5, pp. 767–787. issn: 0020‐4277,
1573‐1952. doi: 10.1007/s11251-018-9453-5.

Kim, H., H. Choi, J. Han and H.‐J. So (Aug. 2012). “Enhancing Teachersʼ ICT Capacity for
the 21st Century Learning Environment: Three Cases of Teacher Education in Korea”.
In: Australasian Journal of Educational Technology 28.6. issn: 1449‐5554, 1449‐3098. doi:
10.14742/ajet.805.

Knuth, D. E. (Apr. 1974). “Computer Science and Its Relation to Mathematics”. In: The
American Mathematical Monthly 81.4, pp. 323–343. issn: 0002‐9890, 1930‐0972. doi:
10.1080/00029890.1974.11993556.

Kosowski, A., M. Małafiejski and T. Noiński (2008). “Application of an Online Judge &
Contester System in Academic Tuition”. In: Advances in Web Based Learning – ICWL
2007. Ed. by H. Leung, F. Li, R. Lau and Q. Li. Vol. 4823. Berlin, Heidelberg: Springer,
pp. 343–354. isbn: 978‐3‐540‐78138‐7. doi: 10.1007/978-3-540-78139-4_31.

Krusche, S. and A. Seitz (Feb. 2018). “ArTEMiS: An Automatic Assessment Management
System for Interactive Learning”. In: Proceedings of the 49th ACM Technical Symposium on
Computer Science Education. Baltimore, USA: ACM, pp. 284–289. isbn: 978‐1‐4503‐5103‐4.
doi: 10.1145/3159450.3159602.

Kurnia, A., A. Lim and B. Cheang (May 2001). “Online Judge”. In: Computers & Education
36.4, pp. 299–315. issn: 03601315. doi: 10.1016/S0360-1315(01)00018-5.

Le, N.‐T., F. Loll and N. Pinkwart (July 2013). “Operationalizing the Continuum between
Well‐Defined and Ill‐Defined Problems for Educational Technology”. In: IEEE Transac‐
tions on Learning Technologies 6.3, pp. 258–270. issn: 1939‐1382. doi: 10.1109/TLT.
2013.16.

Leal, J. P. and F. Silva (May 2003). “Mooshak: AWeb‐basedMulti‐site Programming Contest
System”. In: Software: Practice and Experience 33.6, pp. 567–581. issn: 0038‐0644, 1097‐
024X. doi: 10.1002/spe.522.

Liu, K., Y. Han, J. M. Zhang, Z. Chen, F. Sarro, M. Harman, G. Huang and Y. Ma (July 2023).
“Who Judges the Judge: An Empirical Study on Online Judge Tests”. In: Proceedings of the
32nd ACM SIGSOFT International Symposium on Software Testing and Analysis. Seattle,
USA: ACM, pp. 334–346. isbn: 9798400702211. doi: 10.1145/3597926.3598060.

Luck, M. and M. Joy (July 1999). “A Secure On‐Line Submission System”. In: Software:
Practice and Experience 29.8, pp. 721–740. issn: 1097‐024X. doi: 10.1002/(SICI)1097-
024X(19990710)29:8<721::AID-SPE257>3.0.CO;2-0.

Luxton‐Reilly, A., Simon, I. Albluwi, B. A. Becker, M. Giannakos, A. N. Kumar, L. Ott, J.
Paterson, M. J. Scott, J. Sheard and C. Szabo (July 2018). “Introductory Programming:
A Systematic Literature Review”. In: Proceedings Companion of the 23rd Annual ACM
Conference on Innovation and Technology in Computer Science Education. Larnaca, Cyprus:
ACM, pp. 55–106. isbn: 978‐1‐4503‐6223‐8. doi: 10.1145/3293881.3295779.

Maertens, R., M. Van Neyghem, M. Geldhof, C. Van Petegem, N. Strijbol, P. Dawyndt and
B. Mesuere (May 2024). “Discovering and Exploring Cases of Educational Source Code

193

https://doi.org/10.1145/3231711
https://theses.hal.science/tel-03977604
https://theses.hal.science/tel-03977604
https://doi.org/10.1007/s11251-018-9453-5
https://doi.org/10.14742/ajet.805
https://doi.org/10.1080/00029890.1974.11993556
https://doi.org/10.1007/978-3-540-78139-4_31
https://doi.org/10.1145/3159450.3159602
https://doi.org/10.1016/S0360-1315(01)00018-5
https://doi.org/10.1109/TLT.2013.16
https://doi.org/10.1109/TLT.2013.16
https://doi.org/10.1002/spe.522
https://doi.org/10.1145/3597926.3598060
https://doi.org/10.1002/(SICI)1097-024X(19990710)29:8<721::AID-SPE257>3.0.CO;2-0
https://doi.org/10.1002/(SICI)1097-024X(19990710)29:8<721::AID-SPE257>3.0.CO;2-0
https://doi.org/10.1145/3293881.3295779

Bibliography

Plagiarism with Dolos”. In: SoftwareX 26, p. 101755. issn: 23527110. doi: 10.1016/j.
softx.2024.101755.

Maertens, R., C. Van Petegem, N. Strijbol, T. Baeyens, A. C. Jacobs, P. Dawyndt and B.
Mesuere (2022). “Dolos: Language‐agnostic Plagiarism Detection in Source Code”. In:
Journal of Computer Assisted Learning 38.4, pp. 1046–1061. issn: 1365‐2729. doi: 10.
1111/jcal.12662.

Mak, N., P. Dawyndt and C. Scholliers (2019). “Itch: een educatief testframework voor
automatische feedback op Scratch projecten”. MA thesis. Universiteit Gent. url: http:
//lib.ugent.be/catalog/rug01:002782933.

Maloney, J., M. Resnick, N. Rusk, B. Silverman and E. Eastmond (Nov. 2010). “The Scratch
Programming Language and Environment”. In: ACM Transactions on Computing Educa‐
tion 10.4, pp. 1–15. issn: 1946‐6226. doi: 10.1145/1868358.1868363.

McCabe, T. J. (Dec. 1976). “A Complexity Measure”. In: IEEE Transactions on Software
Engineering SE‐2.4, pp. 308–320. issn: 0098‐5589. doi: 10.1109/TSE.1976.233837.

McCauley, R., S. Fitzgerald, G. Lewandowski, L. Murphy, B. Simon, L. Thomas and C.
Zander (June 2008). “Debugging: A Review of the Literature from an Educational Per‐
spective”. In: Computer Science Education 18.2, pp. 67–92. issn: 0899‐3408, 1744‐5175.
doi: 10.1080/08993400802114581.

Messer, M., N. C. C. Brown, M. Kölling and M. Shi (Mar. 2024). “Automated Grading and
FeedbackTools for ProgrammingEducation: A Systematic Review”. In:ACMTransactions
on Computing Education 24.1, pp. 1–43. issn: 1946‐6226. doi: 10.1145/3636515.

Meszaros, G. (May 2007). xUnit Test Patterns: Refactoring Test Code. Addison‐Wesley. 944 pp.
isbn: 978‐0‐13‐149505‐0.

Mishra,D. S. and S.H. Edwards (Mar. 2023). “TheProgrammingExerciseMarkupLanguage:
Towards Reducing the Effort Needed to Use Automated Grading Tools”. In: Proceedings of
the 54th ACM Technical Symposium on Computer Science Education V. 1. Toronto, Canada:
ACM, pp. 395–401. isbn: 978‐1‐4503‐9431‐4. doi: 10.1145/3545945.3569734.

Mönig, J. and B. Harvey (Apr. 2024). Snap! Build Your Own Blocks. Version v9.2.17. url:
https://snap.berkeley.edu/.

Moreno‐León, J. and G. Robles (Sept. 2015). “Dr. Scratch: A Web Tool to Automatically
Evaluate Scratch Projects”. In: Proceedings of the 10th Workshop in Primary and Secondary
Computing Education. London, UK: ACM, pp. 132–133. isbn: 978‐1‐4503‐3753‐3. doi:
10.1145/2818314.2818338.

Murphy, E., T. Crick and J. H. Davenport (Apr. 2017). “An Analysis of Introductory Program‐
ming Courses at UK Universities”. In: The Art, Science, and Engineering of Programming
1.2, 18:1–18:23. issn: 2473‐7321. doi: 10.22152/programming-journal.org/
2017/1/18.

Myers, G. J., T. Badgett and C. Sandler, eds. (Jan. 2012). The Art of Software Testing. 1st ed.
Wiley. isbn: 978‐1‐119‐20248‐6. doi: 10.1002/9781119202486.

Nayak, S., R. Agarwal and S. K. Khatri (Jan. 2022). “Automated Assessment Tools for
Grading of Programming Assignments: A Review”. In: 2022 International Conference
on Computer Communication and Informatics (ICCCI). Coimbatore, India: IEEE, pp. 1–4.
isbn: 978‐1‐66548‐035‐2. doi: 10.1109/ICCCI54379.2022.9740769.

Nguyen, V., S. Deeds‐Rubin, T. Tan and B. Boehm (2007). “A SLOC Counting Standard”. In:
The 22nd International Annual Forum on COCOMO II and Systems/SoftwareCost Modeling.
Vol. 2007. Los Angeles, USA, pp. 1–16.

194

https://doi.org/10.1016/j.softx.2024.101755
https://doi.org/10.1016/j.softx.2024.101755
https://doi.org/10.1111/jcal.12662
https://doi.org/10.1111/jcal.12662
http://lib.ugent.be/catalog/rug01:002782933
http://lib.ugent.be/catalog/rug01:002782933
https://doi.org/10.1145/1868358.1868363
https://doi.org/10.1109/TSE.1976.233837
https://doi.org/10.1080/08993400802114581
https://doi.org/10.1145/3636515
https://doi.org/10.1145/3545945.3569734
https://snap.berkeley.edu/
https://doi.org/10.1145/2818314.2818338
https://doi.org/10.22152/programming-journal.org/2017/1/18
https://doi.org/10.22152/programming-journal.org/2017/1/18
https://doi.org/10.1002/9781119202486
https://doi.org/10.1109/ICCCI54379.2022.9740769

Nurue, H. D. and J. Gray (Apr. 2024). “A Testing Extension for Scratch”. In: Proceedings
of the 2024 ACM Southeast Conference on ZZZ. Marietta, USA: ACM, pp. 266–271. isbn:
9798400702372. doi: 10.1145/3603287.3651217.

Nystrom, R. (2014). Game Programming Patterns. Los Gatos: Genever Benning. isbn: 978‐0‐
9905829‐1‐5.

Obermüller, F., L. Bloch, L. Greifenstein, U. Heuer and G. Fraser (Oct. 2021). “Code Per‐
fumes: ReportingGoodCode to Encourage Learners”. In: Proceedings of the 16thWorkshop
in Primary and Secondary Computing Education. Germany (virtual): ACM, pp. 1–10. isbn:
978‐1‐4503‐8571‐8. doi: 10.1145/3481312.3481346.

Oliveira, E. C., R. A. Bittencourt and R. P. Trindade (Oct. 2019). “Introduction to Computa‐
tional Thinking for K‐12 Educators through Distance Learning”. In: 2019 IEEE Frontiers
in Education Conference (FIE). Covington, USA: IEEE, pp. 1–9. isbn: 978‐1‐72811‐746‐1.
doi: 10.1109/FIE43999.2019.9028492.

Orrell, J. (Oct. 2006). “Feedback on Learning Achievement: Rhetoric and Reality”. In:
Teaching in Higher Education 11.4, pp. 441–456. issn: 1356‐2517, 1470‐1294. doi: 10.
1080/13562510600874235.

Ota, G., Y. Morimoto and H. Kato (Sept. 2016). “Ninja Code Village for Scratch: Function
Samples/Function Analyser and Automatic Assessment of Computational Thinking
Concepts”. In: 2016 IEEE Symposium on Visual Languages and Human‐Centric Computing
(VL/HCC). Cambridge, UK: IEEE, pp. 238–239. isbn: 978‐1‐5090‐0252‐8. doi: 10.1109/
VLHCC.2016.7739695.

Paiva, J. C., J. P. Leal and Á. Figueira (Sept. 2022). “Automated Assessment in Computer
Science Education: A State‐of‐the‐Art Review”. In: ACM Transactions on Computing
Education 22.3, pp. 1–40. issn: 1946‐6226, 1946‐6226. doi: 10.1145/3513140.

Paiva, J. C., R. Queirós, J. P. Leal and J. Swacha (2020). “Yet Another Programming Exer‐
cises Interoperability Language”. In: 9th Symposium on Languages, Applications and
Technologies. OpenAccess Series in Informatics (OASIcs). Portugal (virtual): Schloss
Dagstuhl–Leibniz‐Zentrum fuer Informatik, 14:1–14:8. doi: 10.4230/OASIcs.SLATE.
2020.14.

Pan, J. (1999). Software Testing. Dependable Embedded Systems. url: https://users.
ece.cmu.edu/~koopman/des_s99/sw_testing/.

Pasternak, E., R. Fenichel and A. N. Marshall (Oct. 2017). “Tips for Creating a Block
Language with Blockly”. In: 2017 IEEE Blocks and Beyond Workshop (B&B). Raleigh, USA:
IEEE, pp. 21–24. isbn: 978‐1‐5386‐2480‐7. doi: 10.1109/BLOCKS.2017.8120404.

Petit, J., S. Roura, J. Carmona, J. Cortadella, J. Duch, O. Gimnez, A. Mani, J. Mas, E.
Rodrguez‐Carbonell, E. Rubio, E. d. S. Pedro andD.Venkataramani (July 2018). “Jutge.Org:
Characteristics and Experiences”. In: IEEE Transactions on Learning Technologies 11.3,
pp. 321–333. issn: 1939‐1382. doi: 10.1109/TLT.2017.2723389.

Peveler, M., E. Maicus and B. Cutler (Feb. 2019). “Comparing Jailed Sandboxes vs Contain‐
ers within an Autograding System”. In: Proceedings of the 50th ACM Technical Symposium
on Computer Science Education. Minneapolis, USA: ACM, pp. 139–145. isbn: 978‐1‐4503‐
5890‐3. doi: 10.1145/3287324.3287507.

Pieterse, V. (Apr. 2013). “Automated Assessment of Programming Assignments”. In: Pro‐
ceedings of the 3rd Computer Science Education Research Conference on Computer Science
Education Research. Arnhem, Nederland: Open Universiteit Heerlen, pp. 45–56. url:
https://dl.acm.org/doi/10.5555/2541917.2541921.

195

https://doi.org/10.1145/3603287.3651217
https://doi.org/10.1145/3481312.3481346
https://doi.org/10.1109/FIE43999.2019.9028492
https://doi.org/10.1080/13562510600874235
https://doi.org/10.1080/13562510600874235
https://doi.org/10.1109/VLHCC.2016.7739695
https://doi.org/10.1109/VLHCC.2016.7739695
https://doi.org/10.1145/3513140
https://doi.org/10.4230/OASIcs.SLATE.2020.14
https://doi.org/10.4230/OASIcs.SLATE.2020.14
https://users.ece.cmu.edu/~koopman/des_s99/sw_testing/
https://users.ece.cmu.edu/~koopman/des_s99/sw_testing/
https://doi.org/10.1109/BLOCKS.2017.8120404
https://doi.org/10.1109/TLT.2017.2723389
https://doi.org/10.1145/3287324.3287507
https://dl.acm.org/doi/10.5555/2541917.2541921

Bibliography

Pirttinen, N., V. Kangas, I. Nikkarinen, H. Nygren, J. Leinonen and A. Hellas (July 2018).
“Crowdsourcing Programming Assignments with CrowdSorcerer”. In: Proceedings of the
23rd Annual ACM Conference on Innovation and Technology in Computer Science Education.
Larnaca, Cyprus: ACM, pp. 326–331. isbn: 978‐1‐4503‐5707‐4. doi: 10.1145/3197091.
3197117.

Queirós, R. and J. P. Leal (June 2011). “Pexil: Programming Exercises Interoperability
Language”. In: Conferência Nacional XATA: XML, Aplicações e Tecnologias Associadas,
9. Vila do Conde, Portugal: ESEIG, pp. 37–48. isbn: 978‐989‐96863‐1‐1. url: http:
//hdl.handle.net/10400.22/4748.

Queirós, R. and J. P. Leal (2012). “Programming Exercises Evaluation Systems”. In: Proceed‐
ings of the 4th International Conference on Computer Supported Education. Vol. 2. Porto, Por‐
tugal: SciTePress, pp. 83–90. isbn: 978‐989‐8565‐06‐8. doi:10.5220/0003924900830090.

Queirós, R. and J. P. Leal (Jan. 2013). “BabeLO—An Extensible Converter of Programming
Exercises Formats”. In: IEEE Transactions on Learning Technologies 6.1, pp. 38–45. issn:
1939‐1382. doi: 10.1109/TLT.2012.21.

Resnick, M., J. Maloney, A. Monroy‐Hernández, N. Rusk, E. Eastmond, K. Brennan, A.
Millner, E. Rosenbaum, J. Silver, B. Silverman and Y. Kafai (Nov. 2009). “Scratch: Pro‐
gramming for All”. In: Communications of the ACM 52.11, pp. 60–67. issn: 0001‐0782,
1557‐7317. doi: 10.1145/1592761.1592779.

Resnick, M. and N. Rusk (Oct. 2020). “Coding at a Crossroads”. In: Communications of the
ACM 63.11, pp. 120–127. issn: 0001‐0782, 1557‐7317. doi: 10.1145/3375546.

Revilla, M. A., S. Manzoor and R. Liu (2008). “Competitive Learning in Informatics: The
UVa Online Judge Experience”. In: Olympiads in Informatics 2.10, pp. 131–148. url:
https://ioinformatics.org/journal/INFOL035.pdf.

Robins, A., J. Rountree andN. Rountree (June 2003). “Learning andTeaching Programming:
A Review and Discussion”. In: Computer Science Education 13.2, pp. 137–172. issn: 0899‐
3408, 1744‐5175. doi: 10.1076/csed.13.2.137.14200.

Romli, R., S. Sulaiman and K. Z. Zamli (June 2010). “Automatic Programming Assessment
and Test Data Generation a Review on Its Approaches”. In: 2010 International Symposium
on Information Technology. Kuala Lumpur, Malaysia: IEEE, pp. 1186–1192. isbn: 978‐1‐
4244‐6715‐0. doi: 10.1109/ITSIM.2010.5561488.

Ronacher, A. and D. Lord (Mar. 2022). Jinja2. Version 3.1. Pallets Projects. url: https:
//jinja.palletsprojects.com/en/3.1.x/.

Rosenberg, J. B. (Oct. 1996). How Debuggers Work: Algorithms, Data Structures, and Architec‐
ture. 1st ed.Wiley. 272 pp. isbn: 978‐0‐471‐14966‐8.

Runeson, P. (July 2006). “A Survey of Unit Testing Practices”. In: IEEE Software 23.4, pp. 22–
29. issn: 0740‐7459. doi: 10.1109/MS.2006.91.

Sarsa, S., J. Leinonen, C. Koutcheme and A. Hellas (Sept. 2022). “Speeding up Automated
Assessment of Programming Exercises”. In: Proceedings of the 2022 Conference on United
Kingdom & Ireland Computing Education Research. Dublin, Ireland: ACM, pp. 1–7. isbn:
978‐1‐4503‐9742‐1. doi: 10.1145/3555009.3555013.

Savidis, A. and C. Savaki (2020). “Complete Block‐Level Visual Debugger for Blockly”. In:
Proceedings of the 2nd International Conference on Human Systems Engineering and Design.
Ed. by T. Ahram,W. Karwowski, S. Pickl and R. Taiar. Advances in Intelligent Systems
and Computing. Munich, Germany: Springer, pp. 286–292. isbn: 978‐3‐030‐27928‐8. doi:
10.1007/978-3-030-27928-8_43.

196

https://doi.org/10.1145/3197091.3197117
https://doi.org/10.1145/3197091.3197117
http://hdl.handle.net/10400.22/4748
http://hdl.handle.net/10400.22/4748
https://doi.org/10.5220/0003924900830090
https://doi.org/10.1109/TLT.2012.21
https://doi.org/10.1145/1592761.1592779
https://doi.org/10.1145/3375546
https://ioinformatics.org/journal/INFOL035.pdf
https://doi.org/10.1076/csed.13.2.137.14200
https://doi.org/10.1109/ITSIM.2010.5561488
https://jinja.palletsprojects.com/en/3.1.x/
https://jinja.palletsprojects.com/en/3.1.x/
https://doi.org/10.1109/MS.2006.91
https://doi.org/10.1145/3555009.3555013
https://doi.org/10.1007/978-3-030-27928-8_43

Sax, L. J., K. J. Lehman and C. Zavala (Mar. 2017). “Examining the Enrollment Growth: Non‐
CS Majors in CS1 Courses”. In: Proceedings of the 2017 ACM SIGCSE Technical Symposium
on Computer Science Education. Seattle, USA: ACM, pp. 513–518. isbn: 978‐1‐4503‐4698‐6.
doi: 10.1145/3017680.3017781.

Schlueter, I. Z., M. Layman, L. Timmermans, B. P. Kinoshita and C. Granum (2022). TAP14 ‐
The Test Anything Protocol V14. Version v14. url: https://testanything.org/tap-
version-14-specification.html.

Scratch Addons (2023). url: https://scratchaddons.com/.
Scratch Foundation (2022).Growing a Global Creative LearningMovement: Scratch Foundation

2022 Annual Report. Scratch Foundation. url: https://www.scratchfoundation.
org/annualreport.

Sels, B., P.Dawyndt, B.Mesuere,N. Strijbol andC.VanPetegem (2021). “TESTed: programmeertaal‐
onafhankelijk testen van oplossingen voor programmeeroefeningen : Eenvoudig oefen‐
ingen opstellen met een DSL”. MA thesis. Universiteit Gent. url: http://lib.ugent.
be/catalog/rug01:003008250.

Shadish,W. R., T. D. Cook and D. T. Campbell (2002). Experimental and Quasi‐experimental
Designs for Generalized Causal Inference. 2nd ed. Experimental and Quasi‐experimental
Designs for Generalized Causal Inference v. 1. Houghton Mifflin. isbn: 978‐0‐395‐61556‐
0.

Shen, V. Y., S. D. Conte and H. E. Dunsmore (Mar. 1983). “Software Science Revisited: A
Critical Analysis of the Theory and Its Empirical Support”. In: IEEE Transactions on
Software Engineering SE‐9.2, pp. 155–165. issn: 0098‐5589. doi: 10.1109/TSE.1983.
236460.

Shore, J. (Sept. 2004). “Fail Fast [Software Debugging]”. In: IEEE Software 21.5, pp. 21–25.
issn: 0740‐7459, 1937‐4194. doi: 10.1109/MS.2004.1331296.

Shute, V. J. (Mar. 2008). “Focus on Formative Feedback”. In: Review of Educational Research
78.1, pp. 153–189. issn: 0034‐6543. doi: 10.3102/0034654307313795.

Simões, A. and R. Queirós (2020). “On the Nature of Programming Exercises”. In: First
International Computer Programming Education Conference (ICPEC 2020). Open Access
Series in Informatics (OASIcs). Vila do Conde, Portugal: Schloss Dagstuhl ‐ Leibniz‐
Zentrum für Informatik, 24:1–24:9. doi: 10.4230/OASICS.ICPEC.2020.24.

Simon (2015). “Emergence of Computing Education as a Research Discipline”. PhD thesis.
Helsinki, Finland: Alto University. 100 pp. url: http://urn.fi/URN:ISBN:978-
952-60-6416-1.

Stahlbauer, A., C. Frädrich and G. Fraser (Dec. 2020). “Verified from Scratch: Program
Analysis for Learnersʼ Programs”. In: Proceedings of the 35th IEEE/ACM International
Conference on Automated Software Engineering. Australia (virtual): ACM, pp. 150–162.
isbn: 978‐1‐4503‐6768‐4. doi: 10.1145/3324884.3416554.

Stahlbauer, A., M. Kreis and G. Fraser (2019). “Testing Scratch Programs Automatically”.
In: Proceedings of the 2019 27th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering. Tallin, Estonia:
ACM, pp. 165–175. isbn: 978‐1‐4503‐5572‐8. doi: 10.1145/3338906.3338910.

Staubitz, T., H. Klement, J. Renz, R. Teusner and C. Meinel (Dec. 2015). “Towards Prac‐
tical Programming Exercises and Automated Assessment in Massive Open Online
Courses”. In: 2015 IEEE International Conference on Teaching, Assessment, and Learning
for Engineering (TALE). Zhuhai, China: IEEE, pp. 23–30. isbn: 978‐1‐4673‐9226‐6. doi:
10.1109/TALE.2015.7386010.

197

https://doi.org/10.1145/3017680.3017781
https://testanything.org/tap-version-14-specification.html
https://testanything.org/tap-version-14-specification.html
https://scratchaddons.com/
https://www.scratchfoundation.org/annualreport
https://www.scratchfoundation.org/annualreport
http://lib.ugent.be/catalog/rug01:003008250
http://lib.ugent.be/catalog/rug01:003008250
https://doi.org/10.1109/TSE.1983.236460
https://doi.org/10.1109/TSE.1983.236460
https://doi.org/10.1109/MS.2004.1331296
https://doi.org/10.3102/0034654307313795
https://doi.org/10.4230/OASICS.ICPEC.2020.24
http://urn.fi/URN:ISBN:978-952-60-6416-1
http://urn.fi/URN:ISBN:978-952-60-6416-1
https://doi.org/10.1145/3324884.3416554
https://doi.org/10.1145/3338906.3338910
https://doi.org/10.1109/TALE.2015.7386010

Bibliography

Staubitz, T., R. Teusner and C. Meinel (Dec. 2017). “Towards a Repository for Open Auto‐
Gradable ProgrammingExercises”. In: 2017 IEEE 6th International Conference on Teaching,
Assessment, and Learning for Engineering (TALE). Hong Kong, China: IEEE, pp. 66–73.
isbn: 978‐1‐5386‐0900‐2. doi: 10.1109/TALE.2017.8252306.

Strickroth, S., M. Striewe, O. Müller, U. Priss, S. Becker, O. Rod, R. Garmann, O. J. Bott
and N. Pinkwart (2015). “ProFormA: An XML‐based Exchange Format for Programming
Tasks”. In: eleed 11.1. issn: 1860‐7470. url: http://nbn-resolving.de/urn:nbn:
de:0009-5-41389.

Striewe, M. (Nov. 2016). “An Architecture for Modular Grading and Feedback Genera‐
tion for Complex Exercises”. In: Science of Computer Programming 129, pp. 35–47. issn:
01676423. doi: 10.1016/j.scico.2016.02.009.

Strijbol, N., P. Dawyndt, B.Mesuere and C.Van Petegem (2020). “TESTed: One Judge to Rule
Them All”. MA thesis. Universiteit Gent. url: http://lib.ugent.be/catalog/
rug01:002836313.

Strijbol, N., R. De Proft, K. Goethals, B. Mesuere, P. Dawyndt and C. Scholliers (Feb. 2024).
“Blink: An Educational Software Debugger for Scratch”. In: SoftwareX 25, p. 101617. issn:
23527110. doi: 10.1016/j.softx.2023.101617.

Strijbol, N., C. Scholliers and P. Dawyndt (June 2023). “Blink: An Educational Software
Debugger for Scratch”. In: Proceedings of the 2023 Conference on Innovation and Tech‐
nology in Computer Science Education. Vol. 2. Turku, Finland: ACM, pp. 648–648. isbn:
9798400701399. doi: 10.1145/3587103.3594189.

Strijbol, N., B. Sels, C. Van Petegem, R. Maertens, C. Scholliers, B. Mesuere and P. Dawyndt
(2024). “TESTed‐DSL: A Domain‐Specific Language to Create Programming Exercises
with Language‐Agnostic Automated Assessment”. In: Software Testing, Verification &
Reliability. Manuscript submitted for publication.

Strijbol, N., C. Van Petegem, R. Maertens, B. Sels, C. Scholliers, P. Dawyndt and B.Mesuere
(May 2023). “TESTed: An Educational Testing Framework with Language‐Agnostic Test
Suites for Programming Exercises”. In: SoftwareX 22, p. 101404. issn: 2352‐7110. doi:
10.1016/j.softx.2023.101404.

Sundarram, K. (July 2022). Please Stop Citing TIOBE. Krishnas̓ personal blog. url: https:
//blog.nindalf.com/posts/stop-citing-tiobe/.

Sutherland, A. V. and A. Booker (Sept. 2019). “Sums of Three Cubes”. Computational
Mathematics Colloquium (Waterloo). url: https : / / math . mit . edu / ~drew /
Waterloo2019.pdf.

Swacha, J. (2018). “SIPE: A Domain‐Specific Language for Specifying Interactive Program‐
ming Exercises”. In: Towards a Synergistic Combination of Research and Practice in Software
Engineering. Ed. by P. Kosiuczenko and L. Madeyski. Vol. 733. Springer, pp. 15–29. isbn:
978‐3‐319‐65208‐5. doi: 10.1007/978-3-319-65208-5_2.

Tang, T., R. Smith, S. Rixner and J. Warren (July 2016). “Data‐Driven Test Case Generation
for Automated Programming Assessment”. In: Proceedings of the 2016 ACM Conference on
Innovation and Technology in Computer Science Education. Arequipa, Peru: ACM, pp. 260–
265. isbn: 978‐1‐4503‐4231‐5. doi: 10.1145/2899415.2899423.

Techapalokul, P. and E. Tilevich (Oct. 2017). “Quality Hound — An Online Code Smell
Analyzer for Scratch Programs”. In: 2017 IEEE Symposium on Visual Languages and
Human‐Centric Computing (VL/HCC). Raleigh, USA: IEEE, pp. 337–338. isbn: 978‐1‐5386‐
0443‐4. doi: 10.1109/VLHCC.2017.8103498.

198

https://doi.org/10.1109/TALE.2017.8252306
http://nbn-resolving.de/urn:nbn:de:0009-5-41389
http://nbn-resolving.de/urn:nbn:de:0009-5-41389
https://doi.org/10.1016/j.scico.2016.02.009
http://lib.ugent.be/catalog/rug01:002836313
http://lib.ugent.be/catalog/rug01:002836313
https://doi.org/10.1016/j.softx.2023.101617
https://doi.org/10.1145/3587103.3594189
https://doi.org/10.1016/j.softx.2023.101404
https://blog.nindalf.com/posts/stop-citing-tiobe/
https://blog.nindalf.com/posts/stop-citing-tiobe/
https://math.mit.edu/~drew/Waterloo2019.pdf
https://math.mit.edu/~drew/Waterloo2019.pdf
https://doi.org/10.1007/978-3-319-65208-5_2
https://doi.org/10.1145/2899415.2899423
https://doi.org/10.1109/VLHCC.2017.8103498

Tedre, M., Simon and L. Malmi (Apr. 2018). “Changing Aims of Computing Education: A
Historical Survey”. In: Computer Science Education 28.2, pp. 158–186. issn: 0899‐3408,
1744‐5175. doi: 10.1080/08993408.2018.1486624.

Timmis, S., P. Broadfoot, R. Sutherland and A. Oldfield (2016). “Rethinking Assessment
in a Digital Age: Opportunities, Challenges and Risks”. In: British Educational Research
Journal 42.3, pp. 454–476. issn: 1469‐3518. doi: 10.1002/berj.3215.

TIOBE (May 2024). TIOBE Index for May 2024. TIOBE Software. url: https://web.
archive . org / web / 20240531151836 / https : / / www . tiobe . com / tiobe -
index/.

Truong, N., P. Bancroft and P. Roe (Sept. 2005). “Learning to Program through theWeb”.
In: ACM SIGCSE Bulletin 37.3, pp. 9–13. issn: 0097‐8418. doi: 10.1145/1151954.
1067452.

Ullah, Z., A. Lajis,M. Jamjoom,A.Altalhi, A. Al‐Ghamdi andF. Saleem (2018). “TheEffect of
Automatic Assessment on Novice Programming: Strengths and Limitations of Existing
Systems”. In: Computer Applications in Engineering Education 26.6, pp. 2328–2341. issn:
1099‐0542. doi: 10.1002/cae.21974.

Ungar, D., H. Lieberman and C. Fry (Apr. 1997). “Debugging and the Experience of Imme‐
diacy”. In: Communications of The ACM 40.4, pp. 38–43. issn: 0001‐0782. doi: 10.1145/
248448.248457.

Valente, L., A. Conci and B. Feijó (Nov. 2005). “Real Time Game Loop Models for Single‐
Player Computer Games”. In: Proceedings of the IV Brazilian Symposium on Computer
Games and Digital Entertainment. Vol. 89. São Paulo, Brazil, p. 99.

Van Petegem, C., L. Deconinck, D. Mourisse, R. Maertens, N. Strijbol, B. Dhoedt, B. De
Wever, P. Dawyndt and B. Mesuere (Mar. 2023). “Pass/Fail Prediction in Programming
Courses”. In: Journal of Educational Computing Research 61.1, pp. 68–95. issn: 0735‐6331,
1541‐4140. doi: 10.1177/07356331221085595.

Van Petegem, C., K. Demeyere, R. Maertens, N. Strijbol, B. De Wever, B. Mesuere and
P. Dawyndt (Apr. 2024). Mining Patterns in Syntax Trees to Automate Code Reviews of
Student Solutions for Programming Exercises. Manuscript submitted for publication. arXiv:
2405.01579. Pre‐published.

Van Petegem, C., R. Maertens, N. Strijbol, J. Van Renterghem, F. Van Der Jeugt, B. De
Wever, P. Dawyndt and B. Mesuere (Dec. 2023). “Dodona: Learn to Code with a Virtual
Co‐Teacher That Supports Active Learning”. In: SoftwareX 24, p. 101578. issn: 23527110.
doi: 10.1016/j.softx.2023.101578.

Verhoeff, T. (2008). “Programming Task Packages: Peach Exchange”. In: Olympiads in In‐
formatics 8, pp. 192–207. url: https://ioinformatics.org/journal/INFOL019.
pdf.

Voeten, I., P. Dawyndt, C. Scholliers and N. Strijbol (2023). “Een blokgebaseerd testframe‐
work voor Scratch.” MA thesis. Universiteit Gent. url: http://lib.ugent.be/
catalog/rug01:003150096.

Wang, B. L. and E. Klopfer (2021). “Developing Resources for Debugging Education Using
Block‐BasedLanguages”.MA thesis.Massachusetts Institute ofTechnology. url:https:
//hdl.handle.net/1721.1/139091.

Wang,W., C. Zhang, A. Stahlbauer, G. Fraser and T. Price (June 2021). “SnapCheck: Auto‐
mated Testing for Snap ! Programs”. In: Proceedings of the 26th ACM Conference on Innov‐
ation and Technology in Computer Science Education. Germany (virtual): ACM, pp. 227–233.
isbn: 978‐1‐4503‐8214‐4. doi: 10.1145/3430665.3456367.

199

https://doi.org/10.1080/08993408.2018.1486624
https://doi.org/10.1002/berj.3215
https://web.archive.org/web/20240531151836/https://www.tiobe.com/tiobe-index/
https://web.archive.org/web/20240531151836/https://www.tiobe.com/tiobe-index/
https://web.archive.org/web/20240531151836/https://www.tiobe.com/tiobe-index/
https://doi.org/10.1145/1151954.1067452
https://doi.org/10.1145/1151954.1067452
https://doi.org/10.1002/cae.21974
https://doi.org/10.1145/248448.248457
https://doi.org/10.1145/248448.248457
https://doi.org/10.1177/07356331221085595
https://arxiv.org/abs/2405.01579
https://doi.org/10.1016/j.softx.2023.101578
https://ioinformatics.org/journal/INFOL019.pdf
https://ioinformatics.org/journal/INFOL019.pdf
http://lib.ugent.be/catalog/rug01:003150096
http://lib.ugent.be/catalog/rug01:003150096
https://hdl.handle.net/1721.1/139091
https://hdl.handle.net/1721.1/139091
https://doi.org/10.1145/3430665.3456367

Bibliography

Wangenheim, C. G.V., J. C. R. Hauck,M. F. Demetrio, R. Pelle, N. D. Cruz Alves, H. Barbosa
and L. F. Azevedo (Apr. 2018). “CodeMaster ‐ Automatic Assessment and Grading of
App Inventor and Snap! Programs”. In: Informatics in Education 17.1, pp. 117–150. issn:
1648‐5831, 2335‐8971. doi: 10.15388/infedu.2018.08.

Wasik, S., M. Antczak, J. Badura, A. Laskowski and T. Sternal (Jan. 2018). “A Survey on
Online Judge Systems andTheir Applications”. In:ACMComputing Surveys 51.1, pp. 1–34.
issn: 0360‐0300. doi: 10.1145/3143560.

Weintrop, D. and U.Wilensky (June 2015). “To Block or Not to Block, That Is the Question:
Studentsʼ Perceptions of Blocks‐Based Programming”. In: Proceedings of the 14th Inter‐
national Conference on Interaction Design and Children. Boston, USA: ACM, pp. 199–208.
isbn: 978‐1‐4503‐3590‐4. doi: 10.1145/2771839.2771860.

Wilcox, C. (Feb. 2016). “Testing Strategies for the Automated Grading of Student Programs”.
In: Proceedings of the 47th ACM Technical Symposium on Computing Science Education.
Memphis, USA: ACM, pp. 437–442. isbn: 978‐1‐4503‐3685‐7. doi: 10.1145/2839509.
2844616.

Wilkinson, M. D. et al. (Mar. 2016). “The FAIR Guiding Principles for Scientific Data
Management and Stewardship”. In: Scientific Data 3.1 (1), p. 160018. issn: 2052‐4463.
doi: 10.1038/sdata.2016.18.

Winters, T., T. Manshreck and H.Wright (Feb. 2020). Software Engineering at Google: Lessons
Learned from Programming over Time. OʼReilly Media. 602 pp. isbn: 978‐1‐4920‐8276‐7.
Google Books: V3TTDwAAQBAJ. url: https://www.oreilly.com/library/view/
software-engineering-at/9781492082781/.

Zavala, L. and B.Mendoza (Feb. 2018). “On the Use of Semantic‐Based AIG to Automatically
Generate Programming Exercises”. In: Proceedings of the 49th ACM Technical Symposium
on Computer Science Education. Baltimore, USA: ACM, pp. 14–19. isbn: 978‐1‐4503‐5103‐4.
doi: 10.1145/3159450.3159608.

Zeller, A. (June 2009). Why Programs Fail: A Guide to Systematic Debugging. 2nd ed. San
Francisco, USA: Morgan Kaufmann. 544 pp. isbn: 978‐0‐12‐374515‐6. url: https:
//www.sciencedirect.com/book/9780123745156/why-programs-fail.

Zhang, L. and J. Nouri (Nov. 2019). “A Systematic Review of Learning Computational Think‐
ing through Scratch in K‐9”. In: Computers & Education 141, p. 103607. issn: 03601315.
doi: 10.1016/j.compedu.2019.103607.

Zinovieva, I. S., V. O. Artemchuk, A. V. Iatsyshyn, O. O. Popov, V. O. Kovach, A. V. Iatsy‐
shyn, Y. O. Romanenko and O. V. Radchenko (Mar. 2021). “The Use of Online Coding
Platforms as Additional Distance Tools in Programming Education”. In: XII Interna‐
tional Conference on Mathematics, Science and Technology Education. Vol. 1840. Journal of
Physics: Conference Series. Kryvy Rih, Ukraine: IOP, p. 012029. doi: 10.1088/1742-
6596/1840/1/012029.

200

https://doi.org/10.15388/infedu.2018.08
https://doi.org/10.1145/3143560
https://doi.org/10.1145/2771839.2771860
https://doi.org/10.1145/2839509.2844616
https://doi.org/10.1145/2839509.2844616
https://doi.org/10.1038/sdata.2016.18
http://books.google.com/books?id=V3TTDwAAQBAJ
https://www.oreilly.com/library/view/software-engineering-at/9781492082781/
https://www.oreilly.com/library/view/software-engineering-at/9781492082781/
https://doi.org/10.1145/3159450.3159608
https://www.sciencedirect.com/book/9780123745156/why-programs-fail
https://www.sciencedirect.com/book/9780123745156/why-programs-fail
https://doi.org/10.1016/j.compedu.2019.103607
https://doi.org/10.1088/1742-6596/1840/1/012029
https://doi.org/10.1088/1742-6596/1840/1/012029

Appendix A.

Task description of the VPW

Below is a translated version of the second Scratch exercise from the 2017
edition of the Flemish Programming Contest (Vlaamse Programmeerwedstrijd,
VPW).

Problem 02 (10 points)
The stage looks like the drawing below.

Write a program that lets the parrot fly from left to right. Whenhe touches
the edge, he must turn around. The programmay only start when the
parrot is clicked. (Tip: use the “change costume to …” block for flying)

Below is a possible solution:

when this sprite clicked

set rotation style left-right

move 15 steps

if on edge, bounce

forever

when this sprite clicked

wait 0.2 seconds

next costume

forever

201

	Samenvatting
	Summary
	Dankwoord
	Table of contents
	List of publications
	Introduction
	Origins and use of automated assessment in computer science education
	The Dodona platform
	Architecture
	Features for educators
	The feedback table
	Exercises and content management

	Structure of this dissertation
	Textual programming languages
	Programming-language-agnostic exercises
	Ergonomic authoring of exercises
	Organization of the first part
	Repositories and user documentation

	Block-based programming languages
	Testing Scratch code
	Debugging Scratch code
	The Scratch execution model
	Organization of the second part
	Repositories

	TESTed
	An educational testing framework
	Introduction and background
	Related work
	Programming-language-agnostic testing frameworks
	Using the framework
	Architectural design of the framework
	Test suites
	Structure of a test suite
	Data serialization
	Statements and expressions

	Evaluating submissions
	Correctness and solvability checks
	Execution planning
	Generating test code
	Executing test code
	Checking test results
	Static analysis of the submission

	Integration with and influences of Dodona
	Architecture of the Dodona platform
	Dodona-provided input for testing frameworks
	The Dodona feedback format

	Programming language support
	Compilation
	Execution
	Dependencies and other files
	Configuration and conventions
	Type support
	Stacktraces and compiler outputs
	Code generation

	Evaluation of the tested framework
	Programming language independence
	Overhead for exercise authors
	TESTed in educational practice

	Conclusion

	A domain-specific language for creating programming exercises
	Background and motivation
	Educational software testing
	Programming exercises
	Input/output testing
	Unit testing
	TESTed 1.0
	Organization of this chapter

	TESTed-DSL
	Test suite structure
	Abstract programming language
	Language-specific test suites
	Language-agnostic task descriptions

	Illustrative examples
	Language-agnostic test suites
	Language-agnostic task descriptions

	Evaluation
	Expressiveness and ergonomics
	Performance

	Results and contributions
	Declarative structure
	Combined input/output and unit testing
	Language-agnostic testing

	Conclusions and future work

	Scratch
	The Scratch programming environment
	The Scratch environment
	Using the environment and the blocks
	Data types
	Sprites, the object model
	Inter-sprite communication
	Defining custom blocks with procedures
	Concurrency and parallelism

	Organization of the source code

	A testing framework for Scratch
	Related work
	Introduction to Itch
	Test suites
	Structure of a test suite
	Before execution
	During execution
	After execution

	Evaluating projects
	Running Itch as a library
	Running Itch as a command line tool
	Performance considerations

	Format of the generated feedback
	Itch in practice
	Capabilities of the testing framework
	Itch in educational practice
	How to assess Scratch projects
	Creating test suites for Scratch exercises

	Writing test suites in Scratch
	Introduction to Poke
	The Poke extension
	Feedback in the Scratch environment
	Comparing Poke to Itch
	Conclusion and future work

	Conclusions

	A debugger for Scratch
	Motivation and significance
	Software description
	Stepwise execution
	Back-in-time debugging
	Programmed breakpoints

	Software architecture
	Instrumentation for stepping
	Back-in-time debugging
	Programmed breakpoints

	Examples
	Maze exercise
	Star exercise

	Impact
	Related work
	Experimental study

	Conclusions

	The Scratch execution model
	Elements of a Scratch program
	Related work
	The current execution model
	Execution of a Scratch program
	Implementation details

	Limitations of the execution model
	During general execution
	Specifically for a debugger

	Towards a new execution model
	Exploration of Scratch projects
	Existing analyses
	A new dataset of Scratch 3.0 projects
	Analysing Scratch 3.0 projects
	Use of blocks
	Size and complexity
	Programming concepts

	Evaluation of the new execution model
	Selection of projects
	Non-interactive projects
	Interactive projects
	Discussion

	Impact and conclusion

	
	Conclusions and opportunities
	Textual programming languages
	Block-based programming languages

	Bibliography
	Task description of the VPW

